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1 Introduction
This dissertation tests how attacks on private Machine Learning methods can affect fairness.
Specifically, this is the first exploration of how common, Byzantine-robust Federated Learning
(FL) methodologies stack up against a new type of attack which seeks to introduce unfairness
into the model. Furthermore, I create an extensible framework to facilitate the same analysis for
future defences. In this section, I provide a brief overview of the background and implications
of this work.

1.1. Background
In recent years, Machine Learning has become an important piece of infrastructure in our in-
creasingly digital world [Eloundou et al. 2023; Department for Education 2023]. Ensuring the
trustworthiness of these systems is therefore an important challenge. During the training of
trustworthy ML models, we wish to guarantee, among other things [Liu et al. 2021; Commis-
sion, Directorate-General for Communications Networks, and Technology 2019]:

• Privacy: End users are not required to turn over their private data during training.
• Fairness: The model performs equally well on all categories of data within the test dis-

tribution (e.g. even accuracy for each class in the test set).
• Robustness: The resulting model reliably completes its task in the presence of Byzantine

failures, such as the attacks discussed below.

However, while there exist methods which attempt to promise any two of these attributes (as-
suming the third is guaranteed) [Blanchard et al. 2017; Tian Li, Beirami, et al. 2021; Xu et al.
2021], it has proven practically difficult to ensure all three simultaneously.

A core framework for maintaining user privacy during training is Federated Learning. In FL,
instead of sending private training data to a central server, each end user locally trains a model
on their data, and then the server aggregates together the local models into a single, global
model (see section 2.1 for a more in-depth explanation). In this dissertation, I investigate the
interaction between fairness and robustness in the context of FL which provides a foundation
to achieve privacy.

I claim that fairness and robustness are mutually exclusive properties in private FL. We have
two options:

(a) To defend against attacks on fairness, we introduce a defence method which, as we will
see, often introduces unfairness itself.

(b) We do not defend against attacks on fairness, thus leaving the model vulnerable to the
unfairness these attacks introduce.

Thus, if there exists an attack that introduces unfairness, we cannot guarantee fairness in a
private system.1 In a recent paper, I showed that it is possible to construct such an attack
[Candidate and Svoboda 2023].

1Unless we have a defence method that does not introduce unfairness itself.

1



CHAPTER 1. INTRODUCTION 2

In other words, imagine a system that can guarantee both fairness and privacy for trusted clients
(that we assume will not run any attacks). If we use this system for untrusted clients (that might
run attacks), we cannot continue to guarantee fairness and privacy without a defence against
fairness attacks. However, many of these defences compromise fairness themselves.

Our ability to guarantee both fairness and privacy of a model in the presence of untrusted
clients remains critical in areas such as healthcare, where patient records must be kept private,
and unfair treatment between groups of people could have serious consequences. Therefore, a
better understanding of how well common FL defence methods can prevent fairness attacks is
important.

1.2. Contributions
In this project, I take a step towards answering the question ‘Can private models be made
robust against attacks on fairness, without introducing unfairness themselves?’. I present both
theoretical (section 3.6.2) and empirical (sections 4.1-4.5) evidence that current defence method-
ologies either have a realistic chance of introducing unfairness into a dataset themselves or fail
to consistently defend against attacks on fairness (justifying (a) above). I additionally extend
the analysis of my previous work to further justify the effectiveness of fairness attacks in the
absence of any defence method ((b); sections 3.6.1 and 4.1).

To allow this analysis to be extended in the future to new defence methods, I construct a
modular codebase with an extensible interface that facilitates the addition of new experiments.
While there exist many open source implementations of common defences in FL (for example
the Flower framework [Beutel et al. 2022]), most implementations of attacks on FL have not
been made with extensibility in mind.

High-level project goals

• Produce a modular framework for testing defences against attacks on fairness in Feder-
ated Learning (chapter 3)

• Evaluate the effectiveness of the fairness attack in the presence of FL defence methods
(chapter 4).

• Investigate the direct effects on the fairness of these defences without any attack (chap-
ter 4).

• Extension: Repeat this analysis for a new defence that specifically targets attacks on
fairness (section 2.3.2.2)

• Extension: Provide theoretical evidence that fairness and privacy are difficult to simul-
taneously guarantee in private FL (section 3.6.2).

• Extension: Establish the effectiveness of fairness attacks in the absence of any defence
method for a wider range of training scenarios (option (b) above; sections 4.1 and 3.6.1)

In chapter 5, I conclude that, under certain assumptions, current methods for achieving robust-
ness in FL can not reliably yield both fair and private model training. Furthermore, we can
expect any new defence based on anomaly detection (a major theme of current methods) will
exhibit similar shortcomings, indicating that future work would benefit from approaching the
problem from a new perspective. These contributions are original to this dissertation.



2 Preparation
In this chapter, I explain how FL allows us to train models without viewing their private training
data (section 2.1). I define fairness, explain why FL can introduce unfairness, and claim that
we can, to some extent, simultaneously guarantee fairness and privacy in trusted settings (i.e.
where we assume no client will run any attack; section 2.2).1 Finally, I discuss how FL can be
attacked, and methods for preventing these attacks, highlighting four algorithms that to imple-
ment in chapter 3. Although robustness in FL also remains an open question, these methods
can, to some extent, simultaneously achieve robustness and privacy in untrusted environments
(section 2.3).

However, I claim that each defence can introduce unfairness itself (section 2.3.2), leading to a
dilemma for guaranteeing fairness and privacy in untrusted settings (i.e. where clients may run
attacks):

• EITHER: we use a defence method, thereby introducing unfairness to our model
• OR: we do not use any defence, where we remain vulnerable to unfairness from fairness

attacks

In both cases, unfairness can be introduced into the training process. At the end of this section,
I explain how I plan to test the claim that these defences introduce unfairness themselves, and
thus cannot be used to yield a fair and private training process (sections 2.4-2.6).

2.1. Federated Learning for privacy in ML
Consider a model that we wish to train on the private data held on users’ local devices. To allow
each user’s data to remain private, we introduce Differential Privacy (DP) by adding noise to
their data so its original contents cannot be determined with high confidence, but the model can
still learn the overall distribution, given enough data2.

Applying this technique directly to the dataset usually requires an impractically large amount
of noise. In Federated Learning, instead of adding noise to the data, each client, i, locally trains
a model on its dataset (starting from the global model, Gt) and adds the noise to the model’s
parameters, to yield a new set of parameters, ci, which are then sent to the server instead of the
data (see fig. 2.1).3 We then aggregate the parameters of each of these local models to produce
a new global model, Gt+1, for example by taking the weighted mean of each parameter:

Gt+1 = Gt +
m−1∑
i=0

pi(ci −Gt) =
m−1∑
i=0

pici (2.1)

where
∑m−1

i=0 pi = 1. Here, ci − Gt is the update associated with client i. A common aggre-
gation function is FedAvg, where pi is set to be proportional to the size of client i’s dataset.
Appendix G provides a summary of all prominent symbols and mathematical notation used in
this dissertation.

1Although the existence of a method that perfectly guarantees both remains an open question.
2Privacy is not a solved problem, although I do not discuss the shortcomings of DP (or any other private FL

method) in this dissertation.
3FL also provides benefits other than for privacy.

3



CHAPTER 2. PREPARATION 4

In this dissertation, I investigate the tradeoff between fairness and robustness in the context of
private machine learning. While I focus on Federated Learning, most of the claims made here
generally apply to any method of training ML models on private data.

DP + Centralised Learning

DP + Federated Learning global model

dataset nClient n local training local model

Server

DP

model 

aggregation
dataset 1Client 1 local model DPlocal training

dataset 0Client 0 local model DPlocal training

…

…

combined 

dataset

Server

dataset 0Client 0 DP

dataset 1Client 1 DP

dataset nClient n DP

local training global model
dataset 

aggregation

Figure 2.1.: Visualisation of the differences between centralised ML and Federated Learning.
While in centralised ML, the training loop is entirely within the server, FL dis-
tributes training across the clients, so each iteration of the training loop requires
communication in both directions.

2.2. Fairness in private FL
2.2.1. Why fairness is important
Throughout this dissertation, I define a model to be fair if its performance across all
categories of data (e.g. a category could be all data points that contain a specific fea-
ture) has low variance. Appendix A provides a more precise definition for fairness. Fairness
is important because unfairness can lead to discrimination against certain groups. Below are
listed three instances where unfairness has caused harm in varying Machine Learning settings.

Re-offending rate prediction (Regression). In 2016, a model for predicting reoffending
rates was reported to be twice as likely to incorrectly predict black defendants as being
higher risk [Larson et al. 2016; Y. Li 2017]. This model was used to inform real sentencing
decisions made by judges.

Face recognition (Computer Vision). Buolamwini and Gebru (2018) found that the error in
facial recognition technology, when tested on darker-skinned females, was 43 times that of
lighter-skinned males [also see NIST (2019)]. The deployment of similar technology for
police surveillance has been found to contribute to greater racial disparity in arrests
[Johnson et al. 2022].

Large Language Models (NLP). Salewski et al. (2023) demonstrated that LLMs were able
to describe a car better when impersonating a man than a woman. As LLMs begin to see
increased usage in everyday life, biases like these could reinforce stereotypes and increase
the marginalisation of underrepresented groups [Y. Li 2017].

In all three cases, improving the performance on the disadvantaged data populations would be
beneficial, even if this results in a drop in overall accuracy.
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2.2.2. The problem of fairness in FL
Fairness is difficult to achieve because of the interaction between the following three phenomena:

(1) Slow rate of convergence. While FL can enable privacy guarantees, a single round of
training in FL requires communication between the clients and the server, which can be very
slow (compare the cycle lengths in fig. 2.1). The rate of convergence is usually improved (but
not solved) by local training on multiple batches between communication rounds.

(2) Access to training data. Training models without access to the training data introduces
some difficult problems. For example, we cannot change the relative proportions of different
categories of data within a private dataset in the same way that data augmentation can be used
to do this in the centralised case by ‘generating’ more data for underrepresented classes [Sharma
et al. 2020; Chawla et al. 2002].4 In section 2.3.1, I discuss how privacy creates a vulnerability
used by adversarial attacks on FL.

(3) Heterogeneity. In almost all real-world scenarios, clients that participate in training are
not identical. They often exhibit both data heterogeneity (their datasets are distributed
slightly differently and/or differently sized), and system heterogeneity (the performance and
uptime of their training hardware vary). The length of a single FL round is usually dominated
by the slowest client, so heterogeneous client populations can result in slow round completion
times.

Fairness is difficult to achieve. All three of the above issues contribute to making fairness
difficult to achieve. Due to data heterogeneity, the distribution of data used to train our model
may be different to the distribution that we wish to test on: even if the union of client datasets
is the ‘correct’ distribution,5 unfairness can still be introduced into the model at training time
because models are trained locally for multiple batches. Since we cannot access this data, unlike
in the centralised case, we cannot use data augmentation to even out these imbalances.

Improving fairness in FL. Current methods of improving fairness mostly focus on increasing
the weight, pi in eq. (2.1), of clients that report high loss on their local datasets, reasoning that
this may increase the impact of categories of data that the model is currently performing poorly
on. While these techniques have been shown to have positive effects on fairness, fairness remains
an open problem in FL, as using this loss heuristic does not necessarily always guarantee perfect
fairness. Critically, if a specific category of data is no longer present during training (as is the
case in chapter 4), these methods do not meaningfully improve the model’s accuracy on this
category of data. Some notable methods are discussed in appendix B.

2.3. Robustness in private FL
In this section, I give an overview of common attacks and defences in Federated Learning, before
discussing some shortcomings of these algorithms in achieving robustness and privacy. I also
briefly explain how defence methods can introduce unfairness.

4Clients also do not communicate high-level attributes of their dataset, such as as the number of data points
for each attribute, so we may not even know how the combined training set is distributed.

5and all classes are ‘equally difficult to learn’
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2.3.1. Attacks on private FL
Attacks on centralised (non-FL) models rely on a part of the supply chain becoming compromised
[Shumailov et al. 2021; Bober-Irizar et al. 2022; Chen et al. 2017; Rance et al. 2022]. For example,
some attacks aim to poison the training dataset. While FL remains vulnerable to such attacks,
an attacker can more directly compromise the entire supply chain by posing as a client.

Threat model for attacks on FL

The attacker:

• Has access to the previous global model, Gt, and an estimate for the number of clients.
• Controls a minority subset of clients, {i, . . . , j}, so that, at each round, they may submit

arbitrary parameters, {ci, . . . , cj}, for aggregation.
• Aims to insert some malicious set of parameters, x, into the global model, Gt+1.

The defender (FL server):

• May view the model submitted by any client, but does not know which are malicious
• Aims to eliminate the effects of all malicious clients, without significantly reducing the

effects of benign clients

Such a threat could reasonably exist in systems where clients are either untrusted (i.e. the at-
tacker joins as a new client), or can be somehow compromised (e.g. by malware).

In a typical attack on FL, (A) the attacker has a set of target parameters, x, which they
wish to insert into the global model. (B) The attacker then computes a set of local, malicious
parameters, ci, such that, after aggregation with the other clients’ models, the resulting global
model, Gt+1, is approximately equal to x.

A robust FL training regime must prevent this kind of malicious insertion of any x into the
model, but previous work has focused on the case where x contains a backdoor. In a fairness
attack, x is instead trained to be unfair.

2.3.1.1. Computing the target parameters (A)
Constructing models with backdoors. A typical backdoor attack aims to introduce new func-
tionality to a model in the presence of some trigger. A simple method of adding this functionality
is to update the dataset, D, to include samples (T (x), F (y)) for each legitimate sample (x, y)
already in D. Here, T constructs the backdoor trigger from input x, for example, by overlaying
a small pattern onto the image, and F encodes the backdoor functionality in the presence of the
trigger, for example, we could have F (·) = 0 [Gu, Dolan-Gavitt, and Garg 2019].

Constructing unfair models. The fairness attack aims to train Gt (and therefore x) to have
high accuracy on some target dataset, DT ⊆ D, and low accuracy on the other data, DN =
D\DT . For example, we may want high accuracy on only classes 0 and 1. We therefore compute
the parameters for x by fine-tuning Gt using only data in DT .
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2.3.1.2. Computing the malicious parameters (B)
Once we have computed our target model, x, we need to find some ci that results in the global
model, Gt+1, being approximately equal to x. A naïve method would be to submit x directly to
the aggregator. In practice, these weights are usually unable to significantly change the global
model after aggregation with a large number of clean clients. Bagdasaryan, Veit, et al. (2019)
propose a more powerful strategy, model replacement, that allows the attacker to substitute
arbitrary target parameters, x, directly into the global model.

The model replacement attack. The idea behind model replacement is that we can construct
ci, so that, when it is passed into the FedAvg update rule, the value of Gt is replaced with x.
We therefore set ci to a scaled version of the target parameters, added to a term that removes
the original Gt from the update rule: c0 = n

n0
(X −Gt) +Gt, where ni is the number of training

samples of client i, and n =
∑m−1

i=0 ni.6 Now, when we pass this into FedAvg, we get

Gt+1 = Gt +
[n0

n
(c0 −Gt)

]
+

m−1∑
i=1

ni

n
(ci −Gt) (2.2a)

= Gt +

[
n0

n

(
n

n0

(x−Gt) +Gt −Gt

)]
+

m−1∑
i=1

ni

n
(ci −Gt) (2.2b)

= x +
m−1∑
i=1

ni

n
(ci −Gt) (2.2c)

where the previous global model, Gt, has been replaced by our x in eq. (2.2c). If we assume
convergence, as t → ∞, ci − Gt → 0 for all i 6= 0, we get Gt+1 = x. Bagdasaryan, Veit, et al.
(2019) further show how this attack can be modified to make it more difficult to defend against.

Why model replacement does not work for fairness attacks. While backdoor attacks at-
tempt to leave the main task accuracy unchanged, fairness attacks expect to reduce this signif-
icantly, preventing convergence. This is an important difference, because the assumption that
updates produced by legitimate clients will converge to 0-length (vector norm) in the model
replacement attack will therefore no longer be true.

The solution: an update prediction attack. The model replacement attack requires this con-
vergence assumption because we do not know the updates produced by other clients. In a recent
paper, I introduced an attack that solves this problem, making attacks on fairness possible [Can-
didate and Svoboda 2023].

In chapter 3, I prove that the difference between the mean client update,
∑m

i=0
ni

n
(ci), and some

set of weights, w, that have been trained on data that is i.i.d. to the union of the clients’ datasets
is normally distributed with 0 mean, and variance a decreasing function of the amount of data
seen during training, tending to 0 in the limit (Theorem 1, section 3.6.1). Thus, for large
datasets and batch sizes, an attacker may be able to accurately predict these updates. This
forms the basis for the update prediction attack I introduced in Candidate and Svoboda (2023),
although the theoretical justification in section 3.6.1 is original to this dissertation.7

6These definitions are summarised in appendix G for later reference.
7The contribution of this dissertation to the formulation of the update prediction attack is twofold: (1) I provide

new theoretical justification for the attack in section 3.6.1, and (2) I generalise the formulation of the attack
to a malicious clients (section 3.3).
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Instead of subtracting the global model, Gt, as is the case in the model replacement attack, the
attacker can now subtract their update prediction, w, thus (approximately) eliminating all other
terms in the FedAvg update rule. We set c0 = n0−n

n0
w + n

n0
x, so the FedAvg update becomes

Gt+1 = Gt +
n0

n

(
n0 − n

n0

w +
n

n0

x−Gt

)
+

m∑
i=1

ni

n
(ci −Gt) (2.3a)

= Gt +
n0 − n

n
w + x +

m∑
i=1

ni

n
(ci)−

m∑
i=0

ni

n
(Gt) (2.3b)

= x +
m∑
i=1

ni

n
(ci)−

n− n0

n
w (2.3c)

≈ x (2.3d)

Here we directly get Gt+1 = x without any convergence assumption, thus allowing us to use
any set of parameters for x (see fig. 2.2).8 The ‘catch’ is that we require a sufficiently large
dataset and batch size in order for these predictions to be accurate. This is task-dependent, but
I empirically show that this attack works even for small batch sizes in section 4.1.

Target

Benign

Predicted

Malicious

Aggregate

c0=3m-2w

3Gt=c0+c1+c2

Gt ≈ X

Figure 2.2.: Visual representation of how the attack is constructed. Each arrow represents a
single client’s parameter vector. In practice, the angles between Gt, ci for i > 0, w,
and x are small, so the length of c0 is not as extreme as this diagram suggests.

In order to fit in our threat model, no knowledge of parameters submitted by other
clients is required by this attack. The attacker only requires an approximate estimate for
the amount of data, n − n0, contributed by other clients. Such an estimate need not be exact
and could be iteratively increased each round until an effective value is found.

2.3.1.3. Why the impact of fairness attacks is important
At the beginning of this chapter (2), I present two scenarios:

• To defend against attacks on fairness, we introduce a defence method which, as we will
see, often introduces unfairness itself.

• We do not defend against attacks on fairness, thus leaving the model vulnerable to attacks
on fairness.

8In this case of a single attacker, the model replacement attack is a special case of the update prediction attack
in which we assume all clients submit 0-length updates.
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In both cases, unfairness can be introduced into the training process. However, without an
attack on fairness, we could attempt to guarantee fairness in a private system by using the
methods described in appendix B and avoiding the use of any FL defence methods (perhaps
there is no advantage to any client to introduce a backdoor). Thus, the possibility of an
attack on fairness implies we cannot guarantee fairness in a private system, even in
the presence of a defence method.9

Practical impact. Attacks on fairness do not only have a theoretical impact. When one or
more clients benefit from an accuracy imbalance between certain types of data in the global
model, these clients are incentivised to perform such an attack.

2.3.2. Defences against attacks on private FL
2.3.2.1. Defences against Byzantine client failures
Anomaly detection: an FL defence philosophy. Almost all attacks on FL follow the general
theme of producing out-of-distribution parameters, ci, to induce out-of-distribution behaviour
in the global model.10 Thus, the proposed solution is quite direct: detect which clients produce
these out-of-distribution parameters, and ignore them.11

Defence 1: anomaly detection with Krum. Blanchard et al. (2017) introduce one possible
method of anomaly detection. The multi-Krum function returns the unweighted average of the
models submitted by the n12 clients with the shortest sum of squared distances to their closest
n− f − 2 neighbours (see algorithm 1, appendix C).

This function aims to provide some notion of Byzantine resilience by discarding parameters that
lie far from a cluster of benign models. If the attacker can control f clients, they will not be able
to construct a dense cluster of malicious models which can be mistaken for a cluster of benign
models because this must contain at least n− f − 2 points, which is assumed to be greater than
f in our threat model. Specifically, the authors define, and prove for the Krum function, the
notion of (α, f)-Byzantine resilience.

Definition 2 ((α, f)-Byzantine resilience)
For 0 ≤ α < π/2 and 0 ≤ f ≤ n, if Vi ∼ G, independently, and E[G] = g, F is (α, f)-Byzantine
resilient if, for B0 ∈ Rd, . . . , Bf−1 ∈ Rd,

F = F (V0, . . . , B0, . . . , Bf−1, . . . , Vn) (2.4)

satisfies 〈E[F ], g〉 ≥ (1 − sin(α))||g||2 > 0 and, for r ∈ [2, 3, 4], E[||F ||r] ∈ O(L) where L is a
linear combination of E[||G||ri ] and

∑n−2
i=0 ri = r.

This definition requires that the aggregated value, F , is expected to be within some radius,
r = ‖g‖ sin(α), of the true, benign update, g. However, there may lie malicious updates within
the d-ball defined by g and r, as shown, for example, by Bagdasaryan, Veit, et al. (2019).

9Unless we have a defence method that does not introduce unfairness.
10If D is the distribution we wish to train on, some data point s is out-of-distribution if s 6∈ Image(D). A set

of parameters are in-distribution only if they can be obtained by training on in-distribution data. At the
beginning of this section, we assume attacks must produce out-of-distribution parameters.

11This does not violate any privacy requirement, because DP guarantees privacy under any transformation: we
only analyse the model after DP has been applied, which cannot tell us much about the model before DP was
applied for in-distribution data.

12In order to follow the notation used by Blanchard et al. (2017), m and n take different definitions from the
rest of this dissertation in this section.
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Defence 2: Trimmed mean anomaly detection. In the trimmed mean defence [Yin et al.
2021], we instead eliminate the client parameters with the n highest and lowest norms. The
FedAvg function is therefore replaced with

trmean(M)k =
1

(1− 2β)m

∑
x∈T (M∗,k)

x (2.5)

where M ∈ Rm×d is a matrix with Mi,∗ = ci, and T (v) returns the set of v’s elements with
the bβmc largest and smallest removed. The authors show that this achieves order-optimal
statistical error rates for smooth, non-convex population loss functions.

The problem with anomaly detection. It is practically difficult to achieve high precision
(low number of accepted attacks) without low recall (high number of rejected benign clients)
when selecting benign clients [see, for example, Rieger et al. 2022]. Mhamdi, Guerraoui, and
Rouault (2018) show that these Byzantine-resilient schemes above accept parameters within a
margin around the true set of clean client parameters that can have a size in Ω(

√
d), where d

is the number of dimensions in the model, which is usually large. There have therefore been
many attacks that take advantage of this loose bound to trick anomaly detection methods into
accepting malicious parameters [M. Baruch, G. Baruch, and Goldberg 2019].

Anomaly detection introduces unfairness. As described in section 2.2.2, we can improve
fairness by increasing the effect on the global model of parameters in the tail of the update
distribution (often using loss as a heuristic for this). However, if our anomaly detection does
not have perfect recall, the clients it is most likely to reject are those that submit parameters
in the tail of the distribution, therefore introducing unfairness into the model. Because these
parameters are entirely removed, this problem cannot be solved by any method of reweighting
minority clients discussed in appendix B. Furthermore, in section 3.6.2 I prove that any anomaly
detection defence that guarantees robustness must also reject some benign clients, and therefore
can introduce unfairness. This is a fundamental problem with anomaly detection algorithms,
which has so far not been addressed.

Defence 3: Weak Differential Privacy. Given the shortcomings of defences based on anomaly
detection, we may wish to construct defences that follow a different philosophy. However, while
there are defences that can retain fairness locally for each client [Tian Li, S. Hu, et al. 2021],
methods for training a fair global model almost always fall back on anomaly detection in some
way.13 For example, Sun et al. (2019) suggest that a weaker version of Differential Privacy
(i.e. clipping vector norm and adding noise to each set of parameters) may be an effective
defence against some attacks. However, while this does not explicitly remove out-of-distribution
updates, its effects disproportionately impact these clients, which induces effects on both fairness
[Bagdasaryan and Shmatikov 2019] and robustness through the same mechanisms as the anomaly
detection defences.14 Recent work has shown that the weak DP defence can also be ineffective
at preventing attacks in some scenarios [H. Wang et al. 2020].

13An alternative method for providing robustness without anomaly detection attempts to use a small, verifiably
legitimate dataset to ‘clean’ the final model, post aggregation [Zeng et al. 2022; Mao et al. 2023]. However,
our ability to remove backdoors from ML models remains an open question, because SGD cannot guarantee to
remove functionality in the same way as it can for adding it. Additionally, after a successful fairness attack,
much of the knowledge of other categories of data will be lost, so fine-tuning an attacked model to a fair
dataset is unlikely to recover this functionality.

14This does not necessarily mean that differentially private FL cannot be fair in general. Some techniques
attempt to provide privacy through DP while avoiding this issue [Jagielski et al. 2019].
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2.3.2.2. Defences against Fairness attacks
All three defences described above remain theoretically sound when we change the attacker’s
objective to target fairness. For example, for the Krum defence, the authors justify the effective-
ness of an attack similar to that of the update prediction attack in their first lemma. Similarly,
appendix D shows why we might expect the trimmed mean defence to remain effective.

Defence 4: Unfair-update detection - a new defence for fairness attacks. While H. Wang
et al. (2020) have shown that verifying that a model does not contain any backdoors is compu-
tationally intractable, verifying that a model is fair across a set of predetermined attributes is
relatively simple to do with high confidence. This suggests a simpler defence may be to directly
measure the fairness impact of each client’s model and assume clients that significantly reduce
fairness are malicious. This defence is described more specifically by algorithm 2 (appendix C).
To minimise the required server-side computation, schemes similar to Credit-Based Client Selec-
tion [Khorramfar 2023] could be implemented to allow trusted clients to carry out this validation
instead.

2.4. Project requirements
In the core part of this project, I aim to show that common FL defences cannot prevent the
fairness attack in a fair manner. I focus this analysis on testing the effects of fairness attacks
on models trained with the four defences listed above.15 As an extension, I generalise these
claims by proving that any defence based on anomaly detection cannot be guaranteeably fair.
I additionally extend my previous analysis of fairness attacks [Candidate and Svoboda 2023] to
show that their formulation is well-founded in a wide range of learning scenarios.

2.4.1. Success criteria
Core success criteria

(a) Build a modular codebase for testing attacks on FL, consisting of implementations of:
(1) A baseline model with high accuracy on three common FL datasets (section 3.2).
(2) A model replacement attack and an update prediction attack, achieving results

comparable to that of previous papers (section 3.3).
(3) The existing weak DP, Krum, and trimmed mean defences, achieving results compa-

rable to those of previous papers against the model replacement attack (section 3.4).
(b) Evaluate the effectiveness of the defences on the attack on fairness (sections 4.1-4.5).
(c) Construct a dataset to demonstrate that each successful defence introduces unfairness

into the FL training routine (sections 4.3, 4.2, and 4.5).

These criteria align with my project proposal (appendix H), with the addition of requirement
(c).16 As planned, I selected two extensions from my original proposal. I have listed these below,
as well as two additional proofs included in chapter 3.17

15Although I cannot claim that a failure of these defences to prevent attacks on fairness implies this is the case
for all current defences, every defence I have encountered is, in some way, based on the ideas covered by these
methods [for example, Nguyen et al. 2023], so any shortcomings are likely to be present in other defences.

16My original proposal aimed to focus this dissertation around the direct effects of fairness attacks. However,
as I further explored the tradeoff between fairness and robustness, it evolved to focus more on this problem.
This motivated the addition of requirement (c), above.

17These were not originally intended to be part of my project goals. However, since they make up a significant
part of this dissertation, I have included them as distinct criteria.
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Extension criteria
(a) Test the unfair-update detection defence described in section 2.3.2.2 (section 4.5).
(b) Provide a proof that fairness and privacy cannot be simultaneously guaranteed using

anomaly detection (section 3.6.2).
(c) Test the performance of the update prediction attack against other aggregation functions,

such as those described by Reddi et al. (2021) (section 4.1).
(d) Theoretically justify the assumptions of the update prediction attack (section 3.6.1).

To summarise, I build a framework for testing attacks and defences on FL. I use this to implement
three baseline models, two attacks, and four defences, and test all 24 combinations of these.

2.4.2. Starting point
Initial codebase. Before this project, I wrote a paper introducing attacks on fairness in Feder-
ated Learning. Therefore, I began with a simple implementation of the fairness attack. However,
as stated in my initial project proposal, I decided to start this project from scratch.

Knowledge of FL. My previous FL experience was minimal: I had only worked on the previous
paper on weekends for three months before the beginning of term, and the majority of this
dissertation had been completed before the module on Federated Learning in Lent term.

2.5. Software engineering tools and techniques
Languages and libraries. I implemented this project in PyTorch because (1) it has plenty
of documentation available online; (2) I prefer the dynamic computation graph over static
alternatives such as TensorFlow; and (3) I already have experience using PyTorch. I chose to
use the Flower Federated Learning framework to handle the FL simulation because this is the
most common framework used at the Computer Laboratory at the University of Cambridge.

Documentation. I used python docstrings and type hints to annotate every important func-
tion, class, or module. To make the project easier to set up, I provided a Docker container
which gathers the necessary dependencies, alongside installation information in the codebase’s
README. I used the PyLint analyser to ensure I kept to the PEP 8 Python style guide.

Testing strategy. This project does not lend itself to a large amount of unit testing because
this would result in a significant waste of energy and GPU time in model training. I instead
test individual components ‘on the fly’, to verify the data as the experiments run. I implicitly
performed full end-to-end testing of all dataset-attack-defence combinations in my evaluation.

Hardware. I used my personal laptop (Dell G7 15) to implement the codebase, write this
dissertation, and run some minor code. However, I used the CamMLSys GPU cluster (mainly
Nvidia RTX 2080 GPUs) to run most of the experiments.

Tools. I used the VSCode and Vim text editors with Git for version control, storing my code
on GitHub so I could access it from the remote server. To schedule my experiments on shared
servers, I used Slurm with a Makefile that automatically generates configurations for each ex-
periment. I used conda to run my code in an isolated development environment.
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Development model. I followed an iterative model of software development: I began with an
initial fairness attack implementation, and then incrementally planned, implemented, and tested
each new feature (attack, defence, or baseline), filling in the main results table as my project
progressed. This process minimised risk, as the results gathered from my project grew linearly
with the implementation progress, while also working well with the planned structure of my
codebase.

Project planning. I used a GitHub project to break down each goal into sprint tasks to actively
track the progress of my repository against my original plan (see appendix H). I made minor
modifications to this plan, to move some of the implementation work earlier to free up revision
time later in the year.

2.6. Ethical considerations
Software licenses. Table 2.1 shows the licenses associated with the libraries used in my project.
Because I want my project to be available for others to use and extend, I used an MIT license
for my codebase.

Table 2.1.: Licenses for software libraries used.
Library License

NumPy BSD-2-Clause
scikit-learn BSD-3-Clause

imbalanced-learn MIT
matplotlib PSF-2.0

Flower Apache-2.0
PyTorch BSD-3-Clause

torchvision BSD-3-Clause
pandas BSD-2-Clause

���� Transformers Apache-2.0

Datasets. The UCI Adult Census dataset is released under a CC0 license, and the CIFAR-10
dataset is released under an MIT license. The Reddit dataset does not have a license, however, I
downloaded it from a reputable source, which is used in many other FL papers.18 Data in both
the Census and Reddit datasets has been anonymised.

Open sourcing malicious code. I intend to make the code for this project open-source. There
are ethical considerations for this because the codebase includes implementations of attacks on
Federated Learning. However not releasing the code would not prevent a motivated attacker
from being able to obtain such implementations. Additionally, open-source codebases provide
useful baselines to help improve the robustness of existing systems.

18see: https://fedscale.ai/docs/dataset, and its inclusion in: https://leaf.cmu.edu/

https://fedscale.ai/docs/dataset
https://leaf.cmu.edu/


3 Implementation
In this chapter, I discuss the construction of the codebase I use to test each of the four defences
against the fairness attack. I will:

1. Construct the realistic FL training scenarios in which a model can be trained fairly (sec-
tion 3.2)

2. Implement and optimise the fairness and backdoor attacks in each scenario (section 3.3)
3. Implement and optimise each defence to prevent the attacks, without changing the attack

configuration (section 3.4)

This tests the best-case scenario for each defence because in practice the defence’s configuration
would not be optimised for the specific attack setup used. Similarly, I use the simplest version
of every attack, rather than including any concealment terms. Therefore, any defence that does
not prevent the attack is unlikely to be successful in any other configuration.

3.1. High-level design goals
The aims of my codebase are twofold:

1. To provide a platform to test the effectiveness of the four identified defences at preventing
attacks on fairness.

2. To act as an expandable baseline that new defences could be added to in order to compare
their performance.

To achieve these aims, I will focus my implementation around the below five, non-functional
requirements.

Performance. Because GPU time can be expensive, I optimise my codebase to efficiently use
the available GPUs (sections 3.2.6 & 3.3.1).

Configurability. To make it simpler to run many experiments, it is possible to control all of
an experiment’s hyperparameters through a simple configuration file (section 3.2.1).

Extensibility. The codebase is built in a modular fashion that allows new attacks and defences
to be easily added without having to change much/any existing code (sections 3.2-3.4).

Usability. The standard interfaces that are implemented for each attack and defence are
clearly documented to make it easier to understand the codebase and add new modules
(section 2.5).

Compatibility. I use mainstream libraries (e.g. PyTorch) so that it is simpler to add new
functionality (section 2.5).

3.2. Constructing realistic baseline models.
This section describes my implementation for core criterion (a.1), section 2.4.1. To achieve
the non-functional requirements in section 3.1, I begin with an outline of how I have split each
component of the training pipeline into a configurable, extensible package (section 3.2.1). I then
describe the three tasks I train on (section 3.2.2) and how a model is trained for each (sections
3.2.3-3.2.5)

14
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3.2.1. Implementation strategy
Configurability. Each experiment is defined by a YAML configuration file. The configuration
of the baseline splits naturally into three independent components: (1) the dataset, (2) the
model, and (3) the training setup. The configuration file is therefore structured to reflect this:

seed: 0
task:

dataset:
name: ...
...

model:
name: ...
...

training:
...

The YAML file should deterministically control the experiment’s results. Unfortunately, in
practice, an issue with seeding the Ray library means that this is not quite true.

Extensibility. Each component of the codebase (datasets, models, …) is defined by an abstract
interface so that any new component that implements the correct interface can be frictionlessly
inserted into the codebase and selected for testing using the corresponding configuration section.

A full dataset is split into many smaller sets: first, into the train, validation, and test sets,
and then each train set into a single set per client, and the validation & test sets into one per
attribute that we are interested in the accuracy of. Therefore, the dataset loading function must
return an instance of the following dataclass:

@dataclass
class Datasets:

name: str
train_datasets: list[torch.utils.data.Dataset]
validation_datasets: dict[str, torch.utils.data.Dataset]
test_datasets: dict[str, torch.utils.data.Dataset]

Similarly, a data loader is constructed to efficiently sample each dataset, so another dataclass
is defined for these:

@dataclass
class DataLoaders:

name: str
train_datasets: list[torch.utils.data.DataLoader]
validation_datasets: dict[str, torch.utils.data.DataLoader]
test_datasets: dict[str, torch.utils.data.DataLoader]

PyTorch provides a standard torch.nn.Module that each of the implemented models inherits
from. This improves compatibility with other code that uses PyTorch (or any ONNX-compatible
framework).

Putting it all together. I provide a package containing a collection of objects that follow each
interface,1 and then select the correct dataset and model based on the configuration with

dataset = DATASETS[config.task.dataset.name](config.task.dataset)
model = MODELS[config.task.model.name](config.task.model)

1This setup differs from that of https://github.com/camlsys/fl-project-template, where all components
for each task are packaged together.

https://github.com/camlsys/fl-project-template
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New components can easily be added by implementing the correct interface, adding an entry to
the corresponding collection (i.e. DATASETS, MODELS, …), and setting the configuration to select
this new entry). Given a dataset, model, and a configuration for the training process, the FL
simulation closely follows the standard setup for the Flower framework.

3.2.2. Datasets
To ensure my experiments are applicable to real scenarios, I test on the following three datasets,
which cover a range of ML fields, reflecting the areas discussed in section 2.2.1:

Salary prediction on the UCI Adult Census dataset (Classification). Classification of
whether individuals earn more or less than $50K per year [Becker and Kohavi 1996]. This
dataset has a clear relationship to real societal issues.

Image classification on the CIFAR-10 dataset (Computer Vision). Classification of
images into one of 10 classes [Krizhevsky 2009]. This is a standard task, which allows for a
direct comparison to previous work.

Next word prediction on the Reddit dataset (NLP). Prediction of the next word in a
Reddit comment [Pushshift n.d.]. This dataset represents an NLP task, which, is
becoming increasingly relevant in Machine Learning (and especially Federated Learning).

All three datasets have been tested extensively in previous work on robust Federated Learning
[Bagdasaryan, Veit, et al. 2019; Bhagoji et al. 2019; H. Wang et al. 2020; Nguyen et al. 2023;
McMahan et al. 2023]. For realism, the data must also be distributed between clients in a ‘re-
alistic’ way, which is discussed in section 4.1 and appendix E.

To train a baseline model on each of these datasets, I must (1) define a function to download
and preprocess the dataset, returning it as an instance of the DataLoaders class, (2) construct
a model that inherits from torch.nn.Module, and (3) find a hyperparameter configuration that
results in an effective model.

3.2.3. Baseline 1: Salary prediction
Dataset preparation. Each feature was either normalised or One Hot Encoded. In all three
baselines, I allocated equal amounts of i.i.d. data to all clients.2 However, as shown in fig. 3.1,
there is a significant amount of bias within the combined distribution.

Model construction. Similarly to previous works [Bhagoji et al. 2019], I constructed the model
from three fully connected layers, with the first two using dropout and a ReLU activation, and
the last using a sigmoid activation.

Hyperparameter selection. The model trained for 40 rounds, with each of the 10 clients
performing 10 iterations over its local dataset on each round. To select hyperparameters, I either
manually ran ablation tests, or, in complex cases, employed a grid search over a reasonable range.
I set the SGD learning rate to 0.01, reducing it to 0.002 at round 25. With this setup, I was
able to achieve 84% accuracy, which is in line with previous work [Bhagoji et al. 2019].

2This is a somewhat unrealistic scenario, but, since I am interested in testing whether the defences work in the
best case, I would not expect this setup to change any results because I expect heterogeneity to make defending
the attacks more difficult. I have performed experiments to show that heterogeneity does not prevent the
attack from functioning in appendix E.
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Figure 3.1.: Joint distribution of weekly hours worked and age statistics, where each green point
represents a single individual earning more than $50K per year, and each red point
represents an individual earning less than or equal to $50K per year.

3.2.4. Baseline 2: Image classification
Dataset preparation. Each colour channel is independently normalised and each sample is
(lazily) augmented by randomly applying translations and horizontal flips. This data preparation
scheme is the same as that of Zagoruyko and Komodakis (2017). Figure 3.2 shows a sample of
the data before and after transformation.

(a) (b)

Figure 3.2.: Sample images from the CIFAR-10 dataset. (a) shows the default images, while (b)
shows these images after the preprocessing and augmentation have been applied.

Model construction. Previous work in robust FL uses a ResNet-18 or ResNet-50 for the
CIFAR-10 dataset. Although potentially impractical for some FL scenarios (due to its 142MB
size), I selected a ResNet-50 to achieve improved performance.

Hyperparameter selection. The local training routine for each client is based on the setup
used by Zagoruyko and Komodakis (2017): SGD with Nesterov momentum set to 0.9 and weight
decay (L2 regularisation) set to 0.0005. Due to resource constraints, I used a batch size of 32
and a schedule that reduces the client learning rate from 0.1 to 0.0001. This model converges
after 120 rounds if each of the 10 clients performs 2 full iterations over its dataset per round.

3.2.5. Baseline 3: Next word prediction
Dataset preparation. I used the albert-base-v2 tokeniser from Hugging Face to convert the
cleaned dataset into a sequence of integers [Lan et al. 2020]. I constructed the dataset from
non-overlapping sequences of 62 tokens, where the model must predict the final token in the
sequence.
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Model construction. An initial embedding layer computes a length-50 vector representation
for each of the 30,000 tokens. I then use a 2-layer LSTM, similar to Nguyen et al. (2023) with
a hidden state of size 50. A linear decoder layer with its weights tied to that of the initial
embedding layer maps the outputs of the LSTM back to tokens.

Hyperparameter selection. Similar to Nguyen et al. (2023), I created 10,000 clients, with 100
participating in each round. The model trains for 100 rounds with each client completing 5
epochs per round. The clients train with SGD and a constant 0.1 learning rate.

3.2.6. Optimising results
Maximising GPU usage. I manually performed a binary search to find the most efficient mini-
batch size for the GPUs. Recent results have shown that even large mini-batch sizes can achieve
the same error rate as pure SGD in certain scenarios [Goyal et al. 2018], so this selection can
be made without much concern for accuracy loss. I also attempted to maximise available GPU
memory by delaying data loading into clients until it is needed.

Model evaluation. Flower provides convenient support for federated evaluation, but there is no
reason to pay the computational cost of this additional simulation, so I performed all evaluation
centrally. I partitioned the training and validation datasets by the attributes that I want to test
the fairness of for each dataset (using Definition 1, appendix A).

3.3. Creating the attacks
This section describes my implementation for core criterion (a.2), section 2.4.1. To maximise
performance, the structure of the attacks is strongly influenced by how the Flower framework
allocates resources to clients. I begin this section by describing how attacks are represented
based on this (extending the structure described in section 3.2.1).

3.3.1. General attack structure.
Efficient client resource allocation. Consider an experiment in which we have 10 clients,
where clients 1-9 are benign, and client 0 performs the more expensive attacking routine. If
1/10th of the resources are naïvely allocated to each client, 9/10ths of the resources will lie idle
while client 0 finishes. Therefore, to maximise GPU utilisation, we must provide client 0 more
resources.3

A standard attack form. In the update prediction attack, we (1) compute a benign update
as our prediction for what other clients might submit, and (2) produce an unfair model to re-
place the global model with. In the fairness attack setup described below, both of these tasks
require almost the same amount of computation as would be required by a benign client. A
neat solution is to split the training across two simulated clients, as shown in fig. 3.4. This is
helpful because allocating different amounts of resources to each simulated client is difficult and
can be inefficient. I refer to clients in the simulation as simulated clients, while the clients they
represent are real clients, so each real, malicious client is represented by two simulated clients.

3We could instead run clients sequentially (i.e. let client 0 use all resources, then client 1, and so on), however
for large client numbers, this becomes wasteful.
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Figure 3.3.: Comparison between training time of the two configurations. Each rectangle rep-
resents a simulated client (malicious clients coloured red), and each row within a
quadrant represents the work done by a single GPU. For the model replacement
attack (right column), running a second client which does no work results in a
negligible increase in training time for the new configuration. However, the new
configuration is more efficient for the update prediction attack (left column), by re-
ducing idle GPUs by splitting the work of the malicious client across two simulated
clients.

The experiment for a fairness attack on 10 real clients with 1 being malicious simulates 11
clients, with simulated client 0 computing the target unfair model. Then, before aggregation,
we compute the malicious parameters from simulated clients 0 and 1, set the parameters of
simulated client 1 to this value, and delete simulated client 0, leaving a list of 10 real clients.
This setup yields high GPU usage while remaining relatively simple and expandable. In the
backdoor attack case, the second client is given an empty dataset. We therefore define the
attack by a function to produce the unfair dataset, and some method to combine the simulated
clients into a real malicious client before aggregation.

@dataclass
class Attack:

name: str

# function to generate dataset `a` from a dataset, the config, and
# the attack index. Important: useful to generate the target model.
# Not intended to make predictions on client updates
get_dataset_loader_a: Callable[[torch.utils.data.Dataset, Cfg, int],

torch.utils.data.Dataset]

# function to generate dataset `b` from data available to clean
# client, the config, and the attack index. This is the clean data
# we expect the attack to have *full* access to, e.g. for predicting
# client updates
get_dataset_loader_b: Callable[[torch.utils.data.Dataset, Cfg, int],

torch.utils.data.Dataset]

# update aggregator to generate attacks before aggregation is performed
# second argument is attack index and fourth argument is `kwargs`
aggregation_wrapper: Callable[[type[fl.server.strategy.Strategy],

int, Cfg, object],
type[fl.server.strategy.Strategy]]

In the example above, client 0 would train with dataset a and client 1 would train with dataset
b. The format_datasets function interleaves these datasets for a attacks defined by the con-
figuration.
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Figure 3.4.: Real client 0 is allocated 2 clients in the simulation to compute the target parameters
and update prediction respectively. The aggregator wrapper is then responsible for
combining these to perform the attack. This is done before the updates are passed
to any other wrappers around the aggregator, such as for the defences.

One issue with this system is that randomly selecting clients to participate in each round leads to
attackers rarely having all of their necessary clients available. Therefore, I also added a custom
client manager that always selects the attacking clients according to a predefined schedule.

Similarly to the previous section, we can then append a list of attack configurations to the YAML
file to select from the attacks package. For example:

attacks:
- name: model_replacement

start_round: 10
end_round: 11
clients: 1
target_dataset:

name: backdoor
size: 1/num_clients

- name: model_replacement
start_round: 40
end_round: 41
clients: 1
target_dataset:

name: backdoor
size: 1/num_clients

3.3.2. The backdoor attack
To implement the backdoor attack, we can apply the following general version of eq. (2.2c) to
the general attack structure described in section 3.3.1, extended to handle a attacking clients:

ci =
1

a

[
n

ani

x +
ani − n

ani

w
]

(3.1)

With this implementation, I achieve results comparable to Bagdasaryan, Veit, et al. (2019) (see
section 4.1).
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3.3.3. The fairness attack
The general rule for the update prediction attack is similar to that of a model replacement
attack. However, our update predictions, w(i) vary between clients. Therefore, we may want
our overall update prediction, w =

∑
i piw(i) to be weighted by some pi that we can define to

improve prediction accuracy:4

ci =
1

a

[
n

ani

x +
ani − n

ni

piw(i)

]
(3.2)

We can extend the general attack structure described in section 3.3.1 by setting dataset a to
introduce unfairness into the global model instead of a backdoor and dataset to b be the same
as all other benign datasets. For the CIFAR-10 dataset, I selected only data with classes 0 or 1
for a; for the Census dataset, I reduced the accuracy on female records by training on a dataset
where all such records were set to earning less than $50K; and for the Reddit dataset, I reduced
accuracy following the token ‘I’ by creating a dataset in which it is always immediately followed
by a ‘.’ token.

Although this attack works as expected, one issue I have encountered is that a relatively high
learning rate can increase variance in model predictions to cause the predicted gradients to be far
enough away from the true values that the model weights become unstable and diverge. When
combined with complex models (e.g. the Reddit language model), the experiment is therefore
very sensitive to small changes in attack setup. Because the update prediction attack is quite
recent, there are also very few examples of working setups.

To implement the fairness attack, I began by allowing the benign processes to communicate their
updates to the attacker, before progressively decreasing the amount of information available to
the attacker, until I found an attack setup that worked without knowledge of the benign updates.

3.4. Reproducing the defences
To implement core criterion (a.3) (section 2.4.1), I first define an abstract interface for a de-
fence. Each defence is represented by a function that maps from a Flower aggregator to a new
aggregator that applies the defence before calling the original aggregation functionality. This is
very similar to Attack.aggregation_wrapper, above.

Next, I implement each defence as described in the corresponding paper [Blanchard et al. 2017;
Yin et al. 2021; Sun et al. 2019], which is discussed in section 2.3.2.

Finally, I search the hyperparameter space to find a setup that can prevent the fairness attack
(or determine that one does not exist). This is discussed in detail in chapter 4. For the Krum
and trimmed mean defences, I was able to find a functioning setup by trial and error, using
heuristics to help determine how ‘close’ a defence is to working. However, I found that the
performance of the Weak DP defence was quite limited (see section 4.4).

3.5. Repository overview
Figure 3.5 shows the file structure for my codebase. Each each set of components described
above (models, datasets, attacks, and defences) is defined within a separate package, for use by
the main scripts (coloured green).

4This follows similar reasoning to why we take a weighted average in FedAvg.
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configs/
        templates/                      Template configs for each component
            ...
        default.yaml                    Default values for each field
        defence_fairness_testing.yaml   Config for defence_fairness.py
    scripts/
        gen_template.sh                 Generate a config file from a list of templates
        slurm.sh                        Run with python environment (for slurm)
    src/
        datasets/
            __init__.py
            adult.py                    Download the 1994 Adult Census dataset
            cifar10.py                  Download the CIFAR-10 dataset
            reddit.py                   Download the Reddit comments dataset
            format_data.py              Split and organise datasets for the simulation
            typing.py                   Define the abstract dataset generator interface
            util.py
        models/
            __init__.py
            fully_connected.py          Fully connected nn for the Adult Census dataset
            resnet_50.py                ResNet-50 for the CIFAR-10 dataset
            lstm.py                     2-layer LSTM for the Reddit dataset
        attacks/
            __init__.py
            backdoor_dataset.py         Modify a dataset to insert a backdoor
            unfair_dataset.py           Modify a dataset to introduce unfairness
            model_replacement.py        Model replacement attack
            update_prediction.py        Update prediction attack
            typing.py                   Define the abstract attack interface
        defences/
            __init__.py
            trim_mean.py                Trimmed mean defence
            krum.py                     Krum defence
            diff_priv.py                Weak differential privacy defence
            fair_detect.py              Unfair update detection defence
            typing.py                   Define the abstract defence interface
        client.py                       Client object and local training routine
        server.py                       Custom aggregation functions and client manager
        evaluation.py                   Centralised evaluation function
        util.py                         Debugging functions
        defence_fairness.py             Run fairness experiment with synthetic datasets
        main.py                         Run main defence testing experiment
        graph_gen.py                    Generate graphs from main.py checkpoints
    pyproject.toml
    Makefile                            Experiment run commands
    Dockerfile
    .gitignore
    LICENSE
    README.md

.

Figure 3.5.: An overview of my codebase’s file structure. Files coloured green are the main
python scripts, while the file coloured blue mostly contains code from a previous
project.

3.6. Theoretical contributions
The theoretical contributions of this dissertation are twofold: (1) I justify the fundamental
assumption of the update prediction attack that it is possible to accurately predict the weights
of a client update given only its training configuration, and (2) I prove that the existence of this
(or any other) attack on fairness implies that we cannot guarantee both fairness and robustness
in FL model training when using a defence based on anomaly detection. Appendix G provides
a summary of prominent symbols and mathematical notation used throughout this section.
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3.6.1. ‘Private’ gradient estimates can be accurately predicted
The update prediction attack assumes we can predict which updates clients may produce by
training a local model on representative data. I show that for large batch or dataset sizes, we
can expect the variance in model parameters to be small (0 in the limit) for strongly convex func-
tions, assuming training is completed for a sufficient number of epochs between each aggregation
round. Then, I discuss how this affects the non-convex case, to conclude that training a local
client on data sampled from the clean distribution is an unbiased estimator of the aggregated
model with low variance, and therefore has a low expected error.

We begin by considering the following general optimisation problem for client i:

min
ci∈Rd

f(ci) = min
ci∈Rd

1

ni

ni−1∑
j=0

fj(ci) (3.3)

where each fi ∈ Rd → R is a continuously differentiable function.5 We want to use mini-batch
gradient descent to solve this problem:

c(k)i = c(k−1)
i − αk

b

b−1∑
j=0

∇fsk,j(c
(k−1)
i ) (3.4a)

= c(k−1)
i − αk[∇f(c(k−1)

i ) + ξk] (3.4b)

where αk is the learning rate, each sk,j is a uniformly random sample from {0, ..., ni − 1}, and
ξk represents the noise introduced by sampling from the training distribution on round k. This
problem description and the following assumptions follow that of Tiejun Li, Xiao, and G. Yang
(2023), whose proof of SGD convergence provides a basis for the following proofs. For simplicity,
I select a learning rate of αk = α1k

−1/2, which satisfies the assumptions required by Tiejun Li,
Xiao, and G. Yang (2023).

We make the following assumptions in the below proofs.

(A1) Mean and covariance of ξk. ∀ε > 0. ∃ a symmetric, positive definite matrix, Σ, such
that

E[ξk|Fk−1] = 0, lim
n→∞

P (||E[ξkξTk |Fk−1]− Σ|| ≥ ε) = 0 (3.5)

where Fk = σ(x0, ξ1, ξ2, . . . , ξk) is the σ-algebra generated from the random initialisation and
noise terms up to round k.

(A2) L-smoothness of f . ∃L such that

∀x, y ∈ Rd. ||∇f(x)−∇f(y)|| ≤ L||x− y|| (3.6)

(A3) µ-strong convexity of f . ∃µ such that

∀x, y ∈ Rd. f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
||x− y||2 (3.7)

5This is a rewritten form of the usual machine learning setup: let fj(ci) = L(M(ci, xj), yj), where L is the loss
function, M is the model, ci are the weights, and (xi, yi) is the ith data point in the dataset.
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(A4) Further smoothness condition for f . ∃p0, r0, Kd > 0 such that, for any ||x− x∗|| < r0,

||∇f(x)−∇2f(x∗)(x− x∗)|| ≤ Kd||x− x∗||1−p0 (3.8)

(A5) Dataset size heterogeneity. If client i has a dataset of size ni, modelled as a random
variable, and n =

∑m−1
c=0 ni for m clients, then,

∃h ≥ 1 ∈ R. ∀i ∈ [0, 1, ...,m− 1]. mni ≤ nh (3.9)

With this definition, if h = 1, all client datasets must have the same amount of data, while as
h→∞, the client data distribution constraints disappear.6

Lemma 1 (variance for a single client). Under assumptions (A1)-(A4), if 1
α1

< 2µ, there exists
some matrix, W ∗, such that

k1/4(c(k)i − c∗i )⇒k N (0, α1W
∗) (3.10)

where ⇒k denotes convergence in probability, c∗ is the unique minimum of f , k ∈ N is large,
and W ∗

k,i,j ∈ O
(

1
b2

)
.

Proof. This extends the result from Tiejun Li, Xiao, and G. Yang (2023). Under the above
assumptions, the authors show that for b = 1 we have eq. (3.10) for some matrix W ∗, where
AW ∗ +W ∗AT − d0W

∗ = Σ and A is independent of all ξi.

Now consider the variance of ξk as b increases. We can assume that the summed gradients are
independent and have finite first 2 moments. Thus, for large b, by the classical CLT, the gradient
estimate, ∇f̂(c(k−1)

i ), is unbiased and normally distributed:

∇f̂(c(k−1)
i ) =

1

b

b−1∑
j=0

∇fsk,j(c
(k−1)
i ) ∼ N

(
Efj [∇fj(c

(k−1)
i )],

Vfj [fj(c
(k−1)
i )]

b

)
(3.11)

This yields a noise term, ξk ∼ N
(
0,V[fi(c(k−1)

i )]/b
)

, with variance inversely proportional to
batch size.

The maximum element in the covariance matrix for vec(ξkξTk ) (where vec is a function that
flattens a matrix into a vector) must be the variance of (ξk)2i for some i. Since (ξk)i is normally
distributed with variance c

b
for some constant c (as in eq. (3.11)), we know that each element of

this covariance matrix must be bounded by Vξk [(ξk)
2
i ] =

2c2

b2
.

We have established that AW ∗ +W ∗AT − d0W
∗ = Σ and that the elements of the covariance

matrix for ξkξ
T
k (and therefore also those of Σ) are in O

(
1
b2

)
, so the elements of W ∗ must also

be in O
(

1
b2

)
.

Now consider the FedAvg aggregation function to compute the global model, G, from the model
c(u)i produced by each client i after u batches using the above SGD setup for the current training
round:

G =
1

n

m−1∑
i=0

nicui (3.12)

6This constraint is only necessary to show that model variance decreases with the number of clients. By tracing
the effects of h through the proof of Theorem 1, we can also see that variance increases with h.
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Theorem 1 (Variance of FedAvg). Under assumptions (A1)-(A5), if 1
α1

< 2µ for each client,
the global model, G, must be normally distributed with covariance matrix Mg such that Mg,p,q ∈
O
(
1/

4
√
enm3b7

)
for a large number of epochs, e, and batch size, b.

Proof. From Lemma 1, we know that each c(e−1)
i is an independent, normally distributed ran-

dom variable with covariance matrix Mi, where Mi,p,q ∈ O
(
1/

4
√
ub8
)
= O

(
1/ 4
√
enib7

)
, for large

e and b. By applying the FedAvg procedure, we get

G ∼ N

(
m−1∑
i=0

ni

n
c∗i ,

m−1∑
i=0

n2
i

n2
Mi

)
(3.13)

Since, by (A5), maxi
ni

n
∈ O

(
1
m

)
for all clients, i, then the covariance matrix Mg =

∑m−1
i=0

n2
i

n2Mi

must have Mg,p,q ∈ O
(
1/ 4
√
enim4b7

)
= O

(
1/

4
√
enm3b7

)
.

Therefore, by Chebyshev’s inequality, the probability of our update prediction error be-
ing greater than γ is bounded by O

(
1/ 4
√
enm3b7γ8

)
.

The above proof can similarly be applied to SGD with momentum, using the results from Tiejun
Li, Xiao, and G. Yang (2023). It follows that if the attacker simulates the entire FL training
process7 using their own dataset (which is i.i.d. to the union of the benign clients’ datasets),
the resulting model prediction should be close to the true value so long as the combined dataset
size, number of epochs per aggregation round, number of clients and/or local batch sizes are large.

We can intuitively see that any claim that variance in all non-convex models tends to 0 under
similar requirements must be false because small differences in early batches can push the model
to converge to different minima for different, i.i.d. datasets. However, it may be reasonable
to assume that for a sufficiently smooth loss function and large enough batch size, this is less
likely to happen, and, since the attacker knows the model’s initial parameters, the dynamics of
training by SGD on a non-convex model are locally similar to the strongly convex case above.

There is also a question of whether practical tasks are sufficiently large for the attack to function
well. This is dataset-dependent, however, I found that the fairness attack continues to function
even with a batch size set to 1. The above analysis also implies that introducing heterogeneity
to the client data distribution does not increase the variance in the aggregated update if clients
participate in every round.

3.6.2. Attacks cannot be fairly detected
We can represent a deterministic anomaly detection defence as a predicate, F : Mm → {0, 1}m,
that returns a vector, v, when presented with the vector of client models, c, with vi = 1, if the
model from client i, should be included in aggregation, and vi = 0 if it should be discarded.
We can characterise such a predicate that is likely to avoid introducing a significant amount of
unfairness as having

P(F ([C0, . . . , Cm−1])m−1 = 1) ≈ 1 (3.14)

7In my testing, I instead made the update predictions in a centralised manner for improved efficiency. If we
have i.i.d. clients with equal dataset sizes, we can use the Lyapunov CLT to show that this is an unbiased
estimate of the aggregated model. In the heterogeneous case this is not necessarily true (since FedAvg is an
unfair aggregation method), although appendix E shows that the update prediction attack can function with
high amounts of heterogeneity.
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where ∀i ∈ [m − 2].Ci ∼ C, [x] is the set of natural numbers less than or equal to x, C is
the distribution of updates produced by clients which only train on data within the legitimate
distribution, and Cm−1 ∼ Uniform(Image(C))8. Similarly, a predicate that provides strong
robustness would have

max
cm−1∈A

[P(F ([C0, . . . , Cm−2, cm−1])m−1 = 1)] ≈ 0 (3.15)

where A is the set of updates which would successfully perform an attack on the aggregated
model if included in aggregation.9 If we make the simplifying assumption that the sets A,
Image(C), and the expected value of {cm−1|F ([C0, . . . , Cm−2, cm−1])m−1 = 1} are all closed d-
balls, we can arrive at a more practical definition, which preserves the same ordering over both
equations:

Definition 3 (rα-robust and rβ-fair)
We say that an aggregator, F , is rα-robust if and only if rα is the radius of the largest d-ball
that for any set of parameters within the ball, cm−1, there exists some c0, . . . , cm−2 such that
F (c)m−1 = 1 and cm−1 ∈ A.

We say that an aggregator, F , is rβ-fair if and only if rβ is the expected radius of the largest d-
ball such that all sets of parameters, cm−1, within the ball satisfy F ([C0, . . . , Cm−2, cm−1])m−1 =
0 and cm−1 ∈ Image(C), where Ci ∼ C for i ∈ [m− 2]

For example, in the Trimmed Mean case, if we assume the effect of attackers is negligible,
the expected lower bound, a, for the magnitude of weight wi satisfies

∫ a

li
( 1
m

∑m−1
j=1 (P(Cj,i =

x)) dx) = β, while its expected upper bound, b, satisfies
∫ ui

b
( 1
m

∑m−1
j=1 (P(Cj,i = x)) dx) = β,

where ∀j. Image(Cj,i) ⊆ [li, ui]. Then, our Trimmed Mean algorithm is rβ-fair for weight wi,10

where rβ = max(ui − b, a− li)/2. Thus, we can see rβ decreases with β.

Theorem 2 (Privacy and fairness). In differential private FL training, there does not exist
any F that is both 0-robust and 0-fair11. Therefore, on any FL training round with submitted
parameters c, there is a non-zero probability that either there exists a benign ci that has F (c)i = 0
or there exists a malicious cj that has F (c)j = 1.

Proof. Proceed by counterexample. Consider a model M(w, x) = wx, where w, x ∈ R are
the model’s parameter and input respectively. Now consider S = (X,X), where X ∼ U(0, 1).
Let x1 = [(0.5, 0.5), (0.5, 0.5)] be some batch sampled from the distribution of S, and x0 =
[(0.5, 2), (0.5,−3)] be a batch of data that lies partially outside S’s image. When we apply
gradient descent with MSE loss, in both cases, we get

w1 = w0 − α
∂(MSE ◦M)

∂w

∣∣∣∣
x0

= w0 −
αw0

2
− α

2
(3.16)

8While the expectation is over the distribution of models, the probability uses a uniform distribution over
all models, which yields the notion of fairness in this case. We can interpret this formula as the expected
proportion of legitimate models that are accepted by F .

9We can interpret this formula as the probability of the most concealed model, cm−1, being accepted by F .
10Some minor modification to the definition is required because trimmed mean applies anomaly detection to

each parameter individually.
11The claim is not that the defences introduce unfairness in every scenario, but rather that there exists some

where they do. The empirical testing in the next sections provides some evidence that this possibility of
introducing unfairness translates to a practical issue.
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Figure 3.6.: Illustration of Definition 3. The green area represents all benign models, while
the malicious models are in red. The line on the left represents the boundary of
models, cm−1, that are expected to be accepted by the anomaly detection, while the
other represents the boundary of whether there is any set of models submitted by
other clients that would result in the model being accepted. We can trivially see
that these lines can never cross, so, since there must be some overlap between the
red and green areas, there is no boundary where rα = 0 = rβ.

Now consider an FL setup, where xi is the training set of client i. In this case, the weight values
submitted by clients 0 and 1 are identical, and thus F ([. . . ,M0]) = F ([. . . ,M1]), however, M0

is trained using out-of-distribution data, which we define to be in set A, while M1 is trained
on in-distribution data for the distribution of S. No function, F , can decide whether a set of
parameters was generated exclusively from data in S because the function from training sets to
model weights is not injective for SGD and thus has no left inverse.

Figure 3.6 provides an intuitive explanation of the proof. However, showing the existence of
an overlap between models from different data distributions does not necessarily imply that the
models produced by malicious data can also be produced by data from the tail of the benign
distribution in practice. Specifically, I have not proven that this issue extends to an arbitrary
set A. However, Shumailov et al. (2021) show that backdoors can be produced from entirely
clean datasets if the data is randomly (or maliciously) shuffled in a specific way.



4 Evaluation
This chapter presents empirical evidence that the results in section 3.6.2 lead to reduced fairness
in the presence of common defence methods in practice.

4.1. Attacks
In this section, I present the results of all three tasks without any defence method. I then
individually investigate the performance of the two major components of the fairness attack:
(1) generation of the unfair target parameters and (2) update prediction.

Experimental setup. In each experiment, there is a single malicious client on every round.1
The Census, CIFAR-10, and Reddit datasets have 10, 10, and 10,000 clients respectively. The
Reddit dataset has a client participation rate of 0.01. Each experiment is run three times on 2
Nvidia RTX 2080 GPUs, which provides a good balance between fast training and maximising
the usage of available GPUs with parallel experiments. All experiments took a total of around
500 GPU hours to complete.2

Baseline and backdoor results. The baseline results (where there is no attack) reported in
table 4.1 line up with those of similar previous works [Bagdasaryan, Veit, et al. 2019; Bhagoji
et al. 2019; H. Wang et al. 2020; Nguyen et al. 2023; McMahan et al. 2023]. This provides a
realistic foundation to test the attacks and defences on.

Table 4.1.: Attack results. ‘Overall’ indicates the accuracy on a clean test set. ‘Backdoor ASR’
is the accuracy of the backdoor in the presence of the trigger. ‘Fair (inc.)’ is the
accuracy (%) on only data the fairness attack aims to increase the accuracy on, while
‘Fair (dec.)’ only uses data it aims to decrease. ‘Fair (chg.)’ is r× |r|+ i× |i|, where
r and i are the differences in ‘Fair (dec.)’ and ‘Fair (inc.)’, respectively, compared to
the baseline row. This value is proportional to the increase in the unfairness value
due to the attack in eq. (A.1), under certain simplifying assumptions. In a few cases,
the signs of i and r are flipped to satisfy these assumptions.

Dataset Attack Overall Backdoor ASR Fair (inc.) Fair (dec.) Fair (chg.)

Census
Baseline 84.81 28.92 97.41 51.36
Backdoor 84.52 99.99 96.98 53.56 -0.0005
Fairness 81.57 23.25 100.00 0.51 0.2592

CIFAR-10
Baseline 92.70 10.23 96.05 91.79
Backdoor 90.92 98.89 95.35 90.38 0.0000
Fairness 17.90 63.63 89.50 0.00 0.8383

Reddit
Baseline 18.08 0.00 0.00 18.94
Backdoor 0.00 100.00 0.00 0.00 -0.0358
Fairness 4.52 0.00 100.00 0.00 0.5632

To verify the defence implementations, I test a model replacement backdoor attack, against
which most of the defences should perform well. The backdoor attack is successful if it results in
a high Attack Success Rate (ASR) while leaving the overall accuracy close to the baseline value.
For the Census and CIFAR-10 datasets without any defence, this is the case.

1Attacking on every round is not necessary, but is practically very similar to a single-round attack.
2Most of these experiments were run on the CaMLSys cluster over the Christmas weekend to avoid disrupting

the work of others with excessive GPU time.

28
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For the Reddit dataset, there is a drop in overall accuracy when the backdoor is inserted. This
drop occurs in the target model, x, which implies that more careful training of this target model
may be necessary when the client locally computes the target backdoor weights. However, since
retention in main task accuracy is not critical for my testing, I didn’t extend my original, simple
training setup to change this.

Fairness attack results. The fairness attack is successful if there is a significant increase in
the ‘Fair (chg.)’ value after it is applied. Table 4.1 shows that this attack has been successful
in all three tasks.

Fairness attack: Testing the target parameters. The accuracy imbalance introduced by the
attack comes mostly from damaging the ‘Fair (dec.)’ performance in the target parameters, x,
rather than increasing ‘Fair (inc.)’. To provide intuition for why this is the case, I used t-SNE
[Maaten and Hinton 2008], PCA, and the activations of a trained InceptionV3 model to project
samples from the CIFAR-10 dataset into a 2-dimensional embedding space, colouring the points
according to their predicted class (fig. 4.1).3,4

Figure 4.1 shows that, as unfairness increases, although the accuracy between classes 0 and 1
improves, this is not because the boundary set by the model becomes more refined. Instead,
in the 100% unfair plot, accuracy improvements are yielded for these classes by expanding the
decision boundary into the previously green regions, thereby correctly classifying the ‘borderline’
points of the target classes. In the fair plot, some of these borderline points were misclassified
as one of the green classes because this model incurred a loss penalty for misclassifying points
of classes 2-9.

Fair predictions 100% unfair predictions50% unfair predictions

Figure 4.1.: 2D representation of the CIFAR-10 data, where blue-coloured points represent data
with class 0, red-coloured points represent class 1, and the other classes are all
coloured green.

A limitation of using the model depicted on the right of fig. 4.1 for the target parameters is that
the attack can be detected based on the model’s low test accuracy. Although the server may not
know which client caused the attack, detection that any client has submitted a malicious set of
parameters would likely lead to the model not being deployed. Therefore an attacker may want
to produce a more subtly unfair model, such as the one model depicted in the middle of fig. 4.1.

3The InceptionV3 model only provides embeddings, while the colours are decided by a ResNet-50 model. If the
embeddings and predictions were from the same model, the predictions could have had an unrealistic, tight
clustering.

4The code I used for this was heavily inspired by the implementation at https://github.com/alexisbcook/
keras_transfer_cifar10

https://github.com/alexisbcook/keras_transfer_cifar10
https://github.com/alexisbcook/keras_transfer_cifar10
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Fairness attack: Testing update prediction accuracy. Given a target model, the second part
of the attack relies on accurate update prediction. I directly characterise the update variance
to gain additional insight into the prediction accuracy. Figure 4.2 shows (a) the average benign
model update magnitude and (b) angle to the aggregated update. Since the fairness attack
prevents the benign clients from converging, the blue update norm distribution (left) shows a
slightly higher magnitude and variance. To achieve accurate update predictions, we require
graph (b) to be tightly distributed with low mean, which remains the case for all three distri-
butions.

Fairness attack

Baseline

Backdoor attack

(b)

Fairness attack

Baseline

Backdoor attack

(a)

8 1211109 0.00 0.060.040.02

Figure 4.2.: Distributions of clean client updates under each attack. (a) shows the update norm
and (b) shows the angle in radians between the update and the aggregated update.
The fairness attack produces a wider update distribution because it prevents con-
vergence.

The reason these distributions are bimodal is unclear. It would make sense if this were due
to the scheduler using two different learning rates. However, the distribution shown in fig. 4.3
indicates that, while there is some change in magnitude at round 25 (when the learning rate
changes), the average benign update does not change significantly.

Is the bimodal distribution due to the LR scheduler?
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Figure 4.3.: Update magnitude distribution at each round. The red line represents malicious
clients while the blue represents benign. This setup used a slightly different batch
size compared to fig. 4.2 due to GPU availability constraints.

4.1.0.1. Attack performance on different aggregators (extension)
Table 4.2 Shows the performance of the fairness attack on three momentum-based aggregators.
I kept all other hyperparameters the same for these experiments. The results are similar to
those in table 4.1, which implies the fairness attack functions against these aggregators without
the need for modification. The baseline performance of these models is slightly lower than with
FedAvg because hyperparameters such as the learning rate schedule have been tuned for the
FedAvg setup.
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Table 4.2.: Results for different aggregators on the CIFAR-10 dataset
Aggregator Attack Overall Fair (inc.) Fair (dec.) Fair (chg.)

FedAdaGrad Baseline 84.58 96.77 53.56
Fairness 75.79 93.71 11.19 0.1786

FedYogi Baseline 78.72 99.98 10.17
Fairness 80.78 99.61 1.69 0.0072

FedAdam Baseline 84.50 97.52 49.83
Fairness 80.14 98.57 6.61 0.1869

Conclusions.

• Both attacks are successful in all three tasks in the absence of any defence methods.
• The update prediction attack can be effectively applied to momentum-based aggregation

functions such as FedAdaGrad, FedYogi, or FedAdam.

4.2. Defence: Trimmed Mean
In this section, I test whether the trimmed mean defence can effectively prevent fairness attacks.

Trimmed mean relies on the assumption that malicious clients produce updates with weight
values that are out of distribution. In appendix D, I show that we can expect this assumption
to hold for the new attack, which is experimentally verified in fig. 4.4, where we can see that the
malicious client in the update prediction attack case, (c), generally has a higher update norm
than the other clients.

(a) (b) (c)

8.2 8.6 9.0 9.4 8 9 10 11 8 10 12 14 16 18

All other clients

Client 0

Figure 4.4.: Update magnitude distribution of the malicious client (0) compared to benign
clients, for the baseline (a), backdoor attack (b), and fairness attack (c). The
fairness attack ((c), red) produces updates that are, on average, larger than the
benign updates

The results produced by this defence in table 4.3 generally follow this expectation,5 with 5/6
attacks being successfully prevented by the defence with little loss of main task accuracy. For
example, we can see that the recall score for predicting >$50K for only female data points in
the Census dataset remains around 50% under the fairness attack, where it previously dropped
close to 0 without any defence. This indicates that my implementation is correct. However,
while the defence weakened the fairness attack for CIFAR-10, it is surprising that this attack
has been at all successful, given the strong evidence above for the expected effectiveness of this
defence, and that no concealment term was used in any of the attacks.

5The paper by Yin et al. (2021) instead tested on a different type of attack, so direct comparisons with these
results are difficult to make.



CHAPTER 4. EVALUATION 32

Table 4.3.: Results for the trimmed mean defence with β = 0.2
Dataset Attack Overall Backdoor ASR Fair (inc.) Fair (dec.) Fair (chg.)

Census
Baseline 84.83 26.60 97.60 51.02
Backdoor 84.84 37.59 97.62 51.17 0.0000
Fairness 84.76 27.26 96.87 48.47 0.0006

CIFAR-10
Baseline 91.98 10.05 95.35 91.14
Backdoor 92.50 10.18 95.60 91.73 0.0000
Fairness 63.11 10.56 71.50 61.01 0.1477

Reddit
Baseline 18.08 0.00 0.00 18.94
Backdoor 18.06 0.00 0.00 18.91 0.0000
Fairness 17.90 0.00 0.00 18.75 0.0000

Synthetic dataset tests: Trimmed mean can introduce unfairness. Theorem 2 gives us
two options for any anomaly detection defence: the defence (1) has a non-zero false positive
rate, or (2) the true positive rate is less than 1. Since we have selected β = 0.2, and therefore
remove 2 clients on each round, we know that on every round we are removing at least one
benign client’s update for each weight. This client is also likely to have data from the tail of the
distribution. To show this, I construct a new synthetic dataset for which the defence demon-
strates this property more clearly.

The clients are split into two groups: there are 5 clients in group A, which all contain data of the
form (x, y) = ((0, X), X), where X is a Bernoulli random variable with p = 0.5, and 1 client in
group B, which contains data of the form (x, y) = ((X, 0), X). The combined dataset represents
the OR logical function. However, a model trained on group A will perform poorly on group B,
resulting in larger updates from group B to correct for this, thus forcing the defence to ignore
these weight updates and introduce unfairness against group B. When each client was selected
for every round, a simple, 2-layer, fully connected network performs at 100% accuracy for all
clients, without the defence. However, when the defence is introduced, the accuracy for group
A remains at 100%, but the accuracy for group B drops to 50%, indicating that the defence has
introduced unfairness.

Conclusions.

• The Trimmed Mean defence can protect some FL models from both attacks.
• There exists at least one dataset for which the trimmed mean defence introduces unfairness

into the training process.
• This defence therefore cannot be used to guarantee fairness in the presence of fairness

attacks.

4.3. Defence: Krum
In this section, I test whether the Krum defence can effectively prevent fairness attacks.

The Krum defence assumes that malicious updates lie far away from the other updates. To
get an idea of how reasonable this assumption is, I used MDS [Kruskal 1964] to project each
update vector from the Census dataset onto a 2D plane while attempting to preserve the distance
matrix, in fig. 4.5. The difference between the benign (blue) and malicious (red) updates is clear,
so we can expect Krum to perform well on this task.
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Figure 4.5.: 2D projection of multiple rounds of model updates from the Census task. The red
points represent malicious updates, while the blue points represent benign updates.
There is a clear separation between the red, malicious points and blue, benign points.
The relative distances from the origin are not representative in this figure.

Figure 4.6 shows which clients were selected at each training round. This shows that the attacker
(client 0) is never selected (the top row contains no blue). Since five clients are removed on each
round, there may be a drop in the model’s main task performance. I removed five clients
because we are more interested in the best-case robustness performance, rather than the best-
case accuracy. Additionally, in practice, we would not know the number of attackers.

Training round
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Figure 4.6.: Clients selected at each training round (blue if selected). Client 0 is running the
fairness attack and is never selected (the top row is entirely white).

The results in table 4.4 are generally in line with these expectations and with previous work
[Blanchard et al. 2017]. However, as with the trimmed mean case, the CIFAR-10 fairness attack
proved more difficult to prevent.

How can Krum control the tradeoff between fairness and robustness? We aim to train a
model where Krum has high precision (robustness) and high recall (fairness) for selecting benign
clients. In the experiments here, by setting the Krum parameter m = 16, we can obtain a perfect
ROC curve. However, we know that Krum can fail to prevent some more complex attacks, in
which case the red line in fig. 4.7 (representing the ‘friendliness’ ranking of the malicious client)
would see an improved ranking. In these cases, the m parameter provided by Krum can control
the precision-recall tradeoff. Future work could investigate how such a value could be dynami-
cally chosen in an online fashion.

6This value is defined in section 3.4 which differs from appendix G
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Table 4.4.: Results for the Krum defence with f = 1 and m = 5
Dataset Attack Overall Backdoor ASR Fair (inc.) Fair (dec.) Fair (chg.)

Census
Baseline 84.82 30.21 97.66 49.66
Backdoor 84.73 29.38 97.47 51.02 -0.0002
Fairness 84.64 29.05 97.47 51.19 -0.0002

CIFAR-10
Baseline 91.59 10.26 95.40 90.64
Backdoor 91.23 10.15 94.75 90.35 0.0000
Fairness 63.78 11.01 72.60 61.58 0.0325

Reddit
Baseline 17.82 0.00 0.00 18.66
Backdoor 17.80 0.00 0.00 18.64 0.0000
Fairness 17.97 0.00 0.00 18.82 0.0000

Appendix F shows further experiments on the effects on fairness of introducing Krum at different
times during training.

Synthetic dataset tests: Krum can introduce unfairness. Using the same setup as the
trimmed mean defence, with five group A clients and one group B client, Krum falls into the
same trap of removing the group B clients when the model is controlled by group A. Thus, we get
50% accuracy for the group B client when Krum is used. A similar analysis for Krum has been
done by H. Wang et al. (2020), using the more realistic CIFAR-10 dataset, but with less clear
fairness effects on the model. Furthermore, fig. 4.7 shows that, even when the client datasets are
large and sampled from i.i.d. distributions, the Krum function is still prone to selecting some
clients more frequently than others (compare the average ranking of the blue line against the
green line).
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Is Krum fair for the Census task?

Figure 4.7.: Score rankings assigned by Krum to each client’s model at each round with the
CIFAR-10 dataset. The red line represents the malicious client, which is consistently
ranked the lowest. I have highlighted two other models that show a disparity in their
average ranking, despite being sampled from the same distribution.

Conclusions.

• The Krum defence can protect some FL models from backdoor and fairness attacks.
• There exists at least one dataset for which the Krum defence introduces unfairness into

the training process.
• This defence therefore can not be used to guarantee fairness in the presence of fairness

attacks.
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4.4. Defence: Weak Differential Privacy
In this section, I test whether the weak Differential Privacy defence can effectively prevent fair-
ness attacks.
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Figure 4.8.: CIFAR-10 ac-
curacy for the DP defence
with fairness attack

The weak Differential Privacy defence did not produce
as strong results as the previous two defences. Fig-
ure 4.8 shows a coarse7 grid search of the overall ac-
curacy after 10 rounds of models trained on CIFAR-10
in the presence of a fairness attack for different clip-
ping and noise values (each box shows the accuracy of
a different model). We can see that the model is ei-
ther unable to learn (darker squares) or only learns the
unfair model (lighter squares: these indicate the accu-
racy of a model that only predicts classes 0 and 1 cor-
rectly). In both cases, the accuracy on classes 2-9 remains
low.

A similar grid can be obtained for the other tasks: fig. 4.9 shows a similar setup for the Census
dataset. We can see that the sets of noise multiplier and norm threshold values that yield high
accuracy on both grids are disjoint, so there is no high accuracy setup that is fair for this defence.
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Figure 4.9.: Accuracy on the target data (right) and the untargeted data (left) for the Census
dataset. No DP defence setup results in high accuracy for both categories.

In table 4.5, on the Census dataset, the backdoor is prevented, but the accuracy has dropped
to 76%, which is the accuracy that would be assigned to a model that always predicts the ma-
jority class. As discussed in section 2.3.2.1, the evidence for the effectiveness of this defence is
limited to only a few empirical results. Furthermore, H. Wang et al. (2020) also demonstrated a
backdoor attack that is not prevented by weak DP. This failure to consistently produce effective
results indicates that weak Differential Privacy is unlikely to be an effective defence against fair-
ness attacks. Additionally, recent works have also shown that it can introduce unfairness into a
model when used with FL [Bagdasaryan and Shmatikov 2019; Ganev, Oprisanu, and Cristofaro
2022; Farrand et al. 2020].

7I also experimentally verified the claims made here on more precise values along the boundary shown in fig. 4.8.
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Table 4.5.: Results for the weak DP defence
Dataset Attack Overall Backdoor ASR Fair (inc.) Fair (dec.) Fair (chg.)

Census
Baseline 75.66 0.76 98.28 0.51
Backdoor 75.73 0.72 98.49 0.34 0.0000
Fairness 76.38 0.00 100.00 0.00 0.2604

CIFAR-10
Baseline 93.60 10.19 95.85 93.04
Backdoor 90.36 99.14 94.35 89.36 0.0011
Fairness 17.62 63.63 88.10 0.00 0.8596

Reddit
Baseline 08.55 0.00 0.54 8.93
Backdoor 0.00 100.00 0.00 0.00 -0.0079
Fairness 04.52 0.00 100.00 0.00 0.9972

Update prediction is resistant to norm clipping Both attacks produce updates with a higher
magnitude than the average (see fig. 4.4). On the same task, the differential privacy defence
applies a norm threshold of 3 to clip each update by. This is less than 25% of the length of
almost all malicious updates produced by the fairness attack, so, while the attack produces large
updates, a much shorter version can still have a surprisingly large effect.

Figure 4.10 shows the cosine similarity between the clean aggregated update and the malicious
updates for the Census task. The backdoor attack remains very similar to the aggregated update,
but the fairness attack produces updates that point in a different direction. While this may make
the fairness attack easier to detect, a larger angle is more ‘economical’ for a fixed-norm update:
if the 10th client has an angle of α to the aggregate of the others, it will cause the direction of
the resulting model to change by at least around 0.1 radians for α = π/2, but as α→ 0, it will
have an increasingly small effect.8

0.70 0.80 0.90 1.000.950.850.750.65

Backdoor attack

Fairness attack

Cosine similarity

Figure 4.10.: Cosine similarity between the clean aggregated update and the malicious update
for the Census task. The backdoor attack is aligned closer to the benign updates
than the fairness attack.

Conclusions.

• The weak Differential Privacy defence is neither fair nor robust for many tasks.
• This defence would therefore not be an effective solution to guarantee safety from fairness

attacks.

8The two attacks have different target models here, so this isn’t a totally fair comparison. Instead, it is an
illustration of how an attacker may gain more control over a model without increasing the magnitude of their
submitted parameters.
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4.5. Defence: Unfair-update detection (extension)
In this section, I test whether the unfair-update detection defence can effectively prevent fairness
attacks.

Table 4.6 shows the results of applying the defence to the CIFAR-10 task. There is a significant
accuracy drop, which is likely due to removing so many clients. However, we can see that the
drop in fairness is minimal, so unfair-update detection has been an effective defence.

Table 4.6.: Results for the unfair-update detection defence
Attack Overall Fair (inc.) Fair (dec.) Fair (chg.)

Baseline 62.39 70.20 60.44
Fairness 62.72 70.80 60.70 0.0000

Synthetic dataset tests: Unfair-update detection can introduce unfairness. Unfair-update
detection is, surprisingly, not a fair defence method. The problem arises from the attack’s greedy
setup: we select the clients that produce the fairest model on the next round, not those that
result in a fairer final model. However, it may be necessary to temporarily reduce fairness to
reach a good value. Ironically, this defence is similar to some of the fair aggregation methods
discussed in appendix B, which may, therefore, encounter similar issues.

To demonstrate the problem, I construct a dataset made from client groups C and D. Clients
in group C contain the data ((X,Y ), Z), where Z = X ⊕ Y , ⊕ is the XOR operation, and
(X,Y ) is sampled uniformly from [(0, 0), (1, 0), (1, 1)], and clients from group D contain the data
((X,Y ), Z), where both X and Y are Bernoulli random variables with p = 0.5. To get the
maximum fairness, we must include group B, but introducing group B for a single round reduces
fairness by producing weights that reduce the accuracy of some instances of group A data. When
training on this dataset, a simple, two-layer, fully-connected model achieves 100% accuracy for
all clients without any defence. However, when the defence is introduced, the accuracy for group
B drops to around 75% on average.

Conclusions.

• Unfairness detection can be an effective defence against fairness attacks.
• Contrary to expectations, unfairness detection can introduce unfairness to a model.
• This defence is therefore not an effective choice for guaranteeing fairness in the presence

of attacks on fairness.
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4.6. Non-functional requirements
At the start of chapter 3, I describe five non-functional requirements to design my codebase
around. Due to the successful configurability and extensibility of my codebase, it was very
simple to run many experiments sequentially. Additionally, because my codebase remains com-
patible with many existing implementations, I could quickly iterate through testing different
models (e.g. for the CIFAR-10 dataset I tested many ResNet configurations). I also documented
my codebase clearly to improve usability.

However, while I was partially successful in creating an efficient codebase, the performance of
my code was reduced by the lack of consistent model checkpoints. During testing, I often had to
restart the experiment every time the code needed to be changed, which resulted in additional
GPU cost.



5 Conclusions
5.1. Implications and future work: a new perspective on

robust aggregation
In section 3.6, I proved that, in the presence of the fairness attack, defences based on anomaly
detection cannot guarantee fairness for a private training routine. In chapter 4, I showed that in
practice, none of the defences considered can guarantee fairness. Furthermore, to my knowledge,
there does not exist any defence that can guarantee the robustness of the global model without
using a method based on those described in this dissertation. Thus, assuming such a defence
does not currently exist, in the presence of untrusted clients, we cannot guarantee the
fairness of a model trained on private data.

Future work. To train fair and private (and robust) ML models, we require a guaranteeably
fair defence method. I have shown that the current anomaly detection-based defences are funda-
mentally unable to make such promises. Therefore, future work would benefit from approaching
the problem from a new perspective.

For example, in section 4.5, I explained that the unfair-update detection algorithm is not fair
because it selects clients greedily. We can consider the aggregator’s job to be a finite MDP,
where the state is the current set of client models, the action is how they are aggregated into a
global model, and the reward is the fairness of the final model. The issue we face in selecting
the best set of clients is that the optimal client selection depends on future states. Thus an
alternative avenue of robustness research may be to investigate how groups of clients can be
used to separately train models to completion, allowing us to check if the final model is fair or
not, and then to combine only those which are fair, thereby eliminating clients based only on
the final model.

5.2. Criteria completed.
1. Build a modular codebase for testing attacks on FL. Chapter 3 describes the

construction of a performant codebase for testing attacks on FL. I evaluate the structure
of the codebase in section 4.6. The results of section 4.1 show that each baseline model
and attack achieve results in line with, and in some cases higher accuracy than, previous
work (core criteria (a.1) and (a.2)). All four of the defences were able to prevent at least
one attack,1 indicating a correct implementation (sections 4.2-4.5; core criterion (a.3)).
This is the first extensible implementation of the attack on fairness, and an original
extension of the update prediction attack to support multiple attackers.

2. Evaluate the effectiveness of each defence method against the fairness attack.
Chapter 4 describes the evaluation of all four defences and discusses the implication of
fairness attacks on the ability of private training routines to guarantee fairness (core
criteria (b) and (c)). For each defence, including unfair-update detection (extension), I
conclude that it is either not always effective at preventing the fairness attack, or
introduces unfairness itself.

1The weak DP defence was able to prevent the backdoor attack on the Census dataset, although the large clean
accuracy drop means this may not be particularly useful.

39
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3. Test the attack against the unfairness detection defence and different aggregators.
Section 4.5 evaluates the performance of the new unfairness detection defence against the
update prediction attack and analyses its effects on fairness (extension criterion (a)).
Section 4.1 describes the attack’s performance against three momentum-based aggregators
(extension criterion (c)), finding that it remains effective in these settings.

4. Theoretically show that fairness and privacy are difficult to simultaneously guarantee.
In section 3.6.1, I provide an original proof to justify the theoretical foundation of the
update prediction attack (extension criterion (d)). In section 3.6.2, I further show that
defences based on anomaly detection cannot guarantee fairness in the presence of this
attack (extension criterion (b)).

5.3. Lessons learnt
The scale of this project has highlighted some mistakes I made early on. Primarily, I did not
emphasise the value of effective experiment tracking enough for a large project like this. I im-
plemented my own system, which has resulted in a zip file of hundreds of experiments on my
desktop2. A better alternative would have been to use specialised libraries or services such as
Hydra and Weights&Biases. More generally, I have learnt that if there is a tool for some specific
function, it is almost always better to use the existing tool than to try to implement it myself,
despite how simple it may seem.

2On the other hand, this system has been effective at ensuring all metrics are tracked in a reproducible manner.
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A A definition of fairness in FL.
Unfairness can be introduced into an FL model at most points in the training pipeline, for
example, by selecting clients with data that might only represent part of the distribution [Shi,
Yu, and Leung 2023]. However, the conflict between privacy, fairness, and robustness is largely
irrelevant at most stages, so I will only consider how aggregation affects fairness during the FL
training process.

The most fundamental distinction for fairness in Learning is between model performance across
protected attributes (e.g. whether the model is more accurate for certain minority groups of
data) and model predictions across protected attributes (e.g. whether the model is more likely
to predict a defendant will re-offend for certain minority groups). While prediction bias is usually
due to bias in the original dataset, performance bias often arises because the training procedure
spends more time optimising for more common categories of data. This dissertation focuses on
how we can prevent unfairness from being introduced into a model during training, so I will
focus on unfairness in performance.

Zhang et al. (2022) separate performance fairness into three categories: client level (between
different clients), attribute level (between data containing different attributes), and agnostic
distribution (between clients which have participated for a different number of rounds). I will
focus on attribute level fairness, because this has the clearest practical effects on the trained
model. I will use a similar definition to Tian Li, S. Hu, et al. (2021).

Definition 1 (fairness)
For some ε ∈ [0,∞), we say that a model with parameters ci is ‘fair’ if and only if

VA [ESA
[L(ci, SA)]] ≤ ε (A.1)

where A is a uniformly random sample from the set of all relevant attributes of the data (e.g.
class, features, style, …), and

P (SA = s) =

{
kP (S = s) if data point s has attribute A

0 otherwise

for some k, where S is sampled from the distribution we wish to learn. L(ci, (x, y)) represents
the loss between y and the output of a model with weights ci when given input x.

We can control the degree of acceptable variance with the parameter ε. In almost every case in
this dissertation, a model labelled as ‘fair’ would satisfy this definition for any reasonable value
of ε.

(ref. on p. 1, 4, 18)
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B Methods for fair FL
Agnostic Federated Learning. Many simple aggregation functions in FL (FedAvg [McMahan
et al. 2023], for example) introduce unfairness by assuming the distribution we want to model
and the empirical distribution of each client’s dataset are approximately the same. In practice,
this is often not the case. Early works on fairness in FL model this by letting the distribution
we want to model, Dλ, be a mixture of smaller Das.

Dλ =
∑
s

aλaDa (B.1)

Here, Da has a very similar meaning to the distribution SA is sampled from in Definition 1,
appendix A. Mohri, Sivek, and Suresh (2019) propose that a better aggregation may therefore
be

L = max
λ∈Λ
L(ci, Dλ) (B.2)

Where L(ci,Dλ) is similar to in Definition 1 for model parameters ci. The idea is that if we
do not know the true λ, then we should optimise the worst-case. While this does not directly
target the notion of fairness described in Definition 1, it intuitively makes sense that models
with higher performance variance between subpopulations of the dataset (Das) would result in
higher loss in the worst case.

In practice, we do not have access to any set Da. However, each client’s local data will be a linear
combination of the set of Das, so with a large enough client count, we can achieve approximately
the same objective by substituting each Da with the dataset of a single client.

A more general formula for fair FL. Tian Li, Sanjabi, et al. (2020) proposed q-FFL, in which,
instead of weighting each client’s loss by a scalar value, we can raise the losses to the power of
some q + 1, before returning the mean of these values. In general q-FFL and many more recent
techniques follow the general form:

LΛ(ci) =
m∑
k=1

f(L(ci, Di), ni) (B.3)

where ni is the length of the dataset, Di, owned by client i, and f(`, n) is a differentiable function
which is convex and increasing for positive `. For example f(`, ·) could alternatively be e` [Tian
Li, Beirami, et al. 2021]. These methods all aim to provide clients with higher loss more control
over the model, reasoning that such clients likely hold more data containing attributes that the
model performs poorly on.

Fairness through sampling. In scenarios where not all clients are selected on every round,
biasing the FL training routine to select high-loss clients to participate in training rounds more
frequently provides an alternative method to increase their impact on the global model [Lai et al.
2021; Cho, J. Wang, and Joshi 2020]. While this requires potentially unreliable predictions of
client loss to decide which clients to select, it has the advantage of preventing any single data
point from having a disproportionate impact on the global model within any single round.
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Federated Multiple Gradient Descent Algorithm. One drawback of these approaches is that
they assume all clients are trustworthy: an attacker could maliciously inflate their loss to gain
control over the shared model. Z. Hu et al. (2023) demonstrated that by applying the Multi-
ple Gradient Descent Algorithm [Mukai 1980] to FL, each client’s loss can be simultaneously
minimised according to the partial order

u ≤ v ⇐⇒ ∀i ∈ {0, . . . , n}.ui ≤ vi (B.4)

The authors claim this implicitly protects fairness by discouraging the aggregator from improving
one client’s loss at the cost of another’s. Z. Hu et al. (2023) also suggest that normalising the
gradient produced by each client may further improve the algorithm’s robustness to adversarial
attacks.

Loss functions with fairness constraints. While the above methods focus on how clients’
models can be more fairly aggregated, Du et al. (2020) suggest a different perspective in which
the clients are themselves incentivised to learn fair models by adding a fairness term to their loss
function. In the context of Definition 1, this could be the inter-attribute variance in accuracy.
Similarly to Mohri, Sivek, and Suresh (2019), the authors claim that simply adding this term
alone may not be sufficient due to the distribution shift between the data used by the clients
and the distribution we are trying to model. To solve this, they suggest reweighting each data
point by some function, θα, subject to

1

n

p∑
k=1

nk∑
i=1

θα(xk
i ) = 1 (B.5)

where xk
i is the ith data point on the kth client.1 For example, we can parameterise θα as a sum

of basis functions, K:

θα(x) =
M∑

m=1

αmKm(x) (B.6)

By allowing the server to iteratively select the values for α which maximise the overall loss, we
can use a similar minimax setup to Mohri, Sivek, and Suresh (2019) to compute θα without
direct knowledge of either distribution.

(ref. on p. 5, 8, 37)

1This notation differs from appendix G for consistency with the paper.



C Defence algorithms.
C.1. Krum
Algorithm 1 Krum

Input: number of clients, n; number to select each round, m; max Byzantine clients, f
Output: global model at round T , GT

1: Initialise global model G0

2: Initialise matrices distances ∈ Rn×n and KM_distances ∈ Rn

3: c← n− f − 2 . we consider the closest c models to each client
4: for each training round, t, in [1, T ] do
5: for each client, i, in [1, n] do
6: ri ← get_client_update(Gt−1) . server sends client i Gt−1 and gets response ri
7: end for
8: for each client, i, in [0, . . . , n− 1] do
9: for each client, j, in [0, . . . , n− 1] do

10: distancesi,j ← distancesj,i ← ||ri − rj||2
11: end for
12: end for
13: for each client, i, in [0, . . . , n− 1] do
14: closest_distances← c smallest values in distancesi
15: KM_distancesi ←

∑c−1
j=0 closest_distancesj

16: end for
17: selected_clients← indexes of m smallest values in KM_distances
18: Gt ← 1

m

∑m−1
i=0 rselected_clientsi

19: end for

(ref. on p. 9)

C.2. Unfair-update detection
Algorithm 2 Unfair-update detection

Input: number of malicious clients, a; vector of datasets to compute fairness across, d
Output: global model at round t, Gt

1: Initialise global model G0

2: for each training round, t, in [1, T ] do
3: for each client, i, in [1,m] do
4: ri ← get_client_update(Gt−1) . server sends client i Gt−1 and gets response ri
5: end for
6: for each combination of m− a clients, c do . loop is expensive for large a and |d|
7: G′

t ← aggregate({ri|i ∈ c})
8: f ← compute_fairness(G′

t,d) . Using Definition 1
9: if f is the most fair so far then

10: Gt ← G′
t

11: end if
12: end for
13: end for

(ref. on p. 11)
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D Detection of fairness attacks
by weight magnitude

We can practically see that the trimmed mean methodology is likely to work against the new
update prediction attack by determining its expected update vector norm, which correlates with
weight magnitude. Consider an attack with 1 malicious client out of n. If the angle between the
target model and the global model (for model replacement) or the predicted update (for update
prediction) is α, and both the target and global models have norm x, we can expect to produce
a malicious set of parameters with norm

x
√

2n(n− 1)(1− cos(α) (D.1)

for both attacks. If n = 10, x = 9.25, and α ∈ [0, π/4] (based on fig. 4.2), we will get a norm in
[0.0, 67.2], which can be far out of the distribution shown in fig. 4.2.

In practice, a determined attacker could reduce the update magnitude, by using more malicious
clients, or clipping the updates to the expected mean norm (which would likely retain much of
the attack’s previous ability, as shown in section 4.4). Nevertheless, since I do not employ any
such methodologies to hide the attacks, we can expect the trimmed mean defence to remain
effective against the fairness attack.

(ref. on p. 11, 31)
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E Fairnesss attacks under high
data heterogeneity

Data heterogeneity Real-world tasks exhibit many types of heterogeneity, most commonly
through varying data composition, dataset size, device availability, and hardware performance
between clients [T. Yang et al. 2018; Hard et al. 2019; Huba et al. 2022]. In the case of attacks
on fairness, heterogeneity in data composition across clients is likely to have the biggest effect
on the attack.

Testing with heterogeneity I have not directly introduced heterogeneity into any of the ex-
periments performed in the main body of this dissertation. Therefore, to show that the fairness
attack remains effective under non-i.i.d. client datasets, I have gathered the results below which
show that this remains the case.

Introducing data heterogeneity. I split the CIFAR-10 dataset using a log-normal distribu-
tion1. I tested with the class distributions parameterised by µ = 0 and σ ∈ {0, 1, 2}. Figure E.1
shows how the distribution of data between clients with different values of σ. I tested the fairness
attack with the same parameters as in section 4.1.
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Figure E.1.: Data distribution for different σ. Each vertical bar represents one client’s data,
where the length of a single section represents the number of data points of the
corresponding class. For readability, I have coloured all but two classes green. In
all three cases, at least one client has a perfectly even distribution of data, which
is the client that represents our attacker.

Results. Figure E.2 shows that although heterogeneity has some effect on the performance of
the fairness attack, the attack remains effective. Additionally, adding heterogeneity would make
it more difficult to detect the attack.

1using a function provided in the CaMLSys template
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Figure E.2.: Training curves under the fairness attack with different heterogeneity values. As
heterogeneity increases (higher σ), the attack’s strength decreases.

(ref. on p. 16, 16, 23)



F Testing attack recovery by
introducing Krum during
training

Here, I investigate the dynamic between adding attacks and defences at different times during
training. Specifically, I am interested in:

• Does the model retain some residual knowledge of non-target classes that allows it to
rapidly re-learn a fair representation after an attack is removed?

• Does the Krum defence reduce the recovery speed of a model after an attack finishes by
removing the large updates produced due to the unfair model?

Figure F.1 shows how the accuracy on the set of data that is disadvantaged by the fairness attack
changes over time in different scenarios. Accuracy increases faster after an attack is removed
compared to training the initial model (compare accuracy increase at round 0 to at round 30 in
the upper middle plot).
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Figure F.1.: Accuracy curves where the fairness attack and Krum defence are added at different
points in training

Furthermore, including the defence counter-intuitively increases rate of recovery (now compare
accuracy increase at round 0 to at round 20 in the lower right plot), which may be due to lower
variance in client updates when the model removes those that lie furthest from the centre of
the distribution. This implies that it is preferable to continue training an attacked model using
Krum over restarting the training process entirely.

(ref. on p. 32)

52



G Notation reference
Federated Learning
Gt The parameters of the global model at time t as a vector (upper-case used for con-

sistency with previous work)
ci The vector of client i’s parameters at the current training round
Ci The random variable representing the parameters submitted by client i
C The distribution of updates that could be produced by clean clients
m The total number of clients in the current training round (redefined in section 2.3.2.1)
pi The weighting applied to parameters of client i during aggregation (ni

n
for FedAvg)

ni The number of training samples owned by client i
n The total amount of data owned by all clients (redefined in section 2.3.2.1)
D The clean training data distribution
Di The data distribution for client i
s A tuple (x, y) sampled from the clean training distribution
D The union of clean client datasets, sampled from D
Di The dataset owned by client i
d The number of parameters in the model being trained
h The heterogeneity factor of the participating clients

Local model training
u The number of batches each local model is trained for
e The number of epochs each local model is trained for
k The current epoch
αk The local learning rate at epoch k

c(k)i The estimate of client i’s parameters at epoch k
b The mini-batch size
sk,j The jth uniformly random sample of a data point index at epoch k
ξk The noise introduced by sampling from Di on round k

Loss functions
L(ci, s) The loss between y and the output of a model with weights ci when given input x,

where (x, y) = s
L(ci, l) The sum of L(ci, s) for each s ∈ l
µ The loss function’s convexity term
L The loss function’s smoothness term
c∗i The unique minimum of the loss function for client i

Fairness
ε The performance variance threshold for a model to be defined as “fair”
A A uniformly random sample from the set of all relevant attributes of the test set (e.g.

class, feature, style, …). The difference to A below should be clear from context
SA A sample from the legitimate training set that contains attribute A
DA The set of all data points in dataset D that contain attribute A
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Attacks on FL
A The set of updates that could successfully perform an attack
a The number of malicious clients
x A vector of parameters that the attacker wishes to substitute into Gt+1

T The function to modify a data point to contain the backdoor trigger
F The function to modify a data point to follow the backdoor functionality
DT A dataset containing only data the fairness attack aims to increase the accuracy of
DN A dataset containing only data the fairness attack aims to decrease the accuracy of
w The attacker’s prediction of the aggregated update without the malicious parameters
w(i) The ith attacker’s prediction of the aggregated update without the malicious param-

eters
F A function representing a deterministic anomaly detection defence as a predicate

Operations
bxc The largest integer less than or equal to x (x ≥ 0)
[x] The set of natural numbers less than or equal to x
[x0, . . . , xn−1] A vector with xi at element i
vi The value at index i of vector v
Mi,j The value at row i and column j of matrix M .
Mi,∗ A vector representing row i of matrix M
∇f(x) The gradient of f at point x

∇f̂(x) An unbiased, normally distributed estimate of ∇f(x)
Operations (probability)
P (f(X)) The probability predicate f is true for random variable X
Image(X) The set of possible values for random variable X
EX The expectation of f(X) over random variable X
VX The variance of f(X) over random variable X
N(µ, σ2) A normal distribution with mean µ and variance σ2

Xk ⇒k X Xk converges in probability to X, where k →∞
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Project proposal: Evaluating attacks on
fairness in Federated Learning

Candidate 2417C

Introduction
Federated Learning (FL) is a machine learning paradigm that allows models to be trained on
private data by distributing training across user devices. In FL, each user locally trains a copy
of the model on its own private data, and then sends the resulting weights to a server. The
server then aggregates the weights to produce a central model that has learnt from the data of
all clients [McMahan et al. 2016].

Consequently, by using FL, we can train a model without requiring each user to send their
private data to the server. FL has therefore been used in industries such as health and telecom-
munications in order to keep sensitive user data private. However, the reduced transparency of
private training data has also opened the door for a variety of training time backdoor attacks.
This is because it is difficult for the server to verify updates produced by clients as it cannot
access the training data used to produce them. Backdoor attacks, where the client produces
updates which cause the model to have new functionality in the presence of some trigger, have
been widely studied, along with defences against them [Bagdasaryan et al. 2020; Wang et al.
2020; Fang et al. 2020; Bhagoji et al. 2019].

However, attacks on machine learning do not necessarily need to insert a backdoor. What if the
attacker instead wants to modify the existing behaviour to provide them with some advantage
over other users? In this project, I will investigate attacks which target fairness in FL. Here,
instead of introducing new functionality, we attempt to force the model to have higher accuracy
on data that has a certain attribute. In short, this is a denial of service attack on data that does
not contain this specific attribute. Through employing a fairness attack, a malicious user could
gain an unfair advantage over other users by sabotaging the shared model’s accuracy on only
certain types of data. Preventing this kind of attack would be critical in areas such as healthcare,
where unfairness in treatment between groups of people could have serious consequences.

Description of the project
In a previous paper, I have introduced an attack on fairness in FL [Candidate and Svoboda
2023]. However, this attack has so far only been tested on a simple dataset with no defence. It
has not yet been fully established how susceptible FL currently is to attacks on fairness, and
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how well it can be defended. In this project, I will implement three existing backdoor defences
to test their effectiveness on the fairness attack when applied to a variety of common datasets.
My dissertation will attempt to answer the question: “to what extent can current defences for
backdoor attacks be used to protect federated learning models from attacks on fairness?”

I will first implement the fairness attack against models trained on the CIFAR10, Reddit, and
1994 adult census datasets [Krizhevsky 2009; Völske et al. 2017; Becker and Kohavi 1996]. Then,
I will test the performance of the attacks against three backdoor defences:

• Weak differential privacy: using update clipping and Gaussian noise to reduce the effect
of malicious updates [Sun et al. 2019].

• Robust aggregation: using the geometric mean [sic] to reduce the effect of out-of-distribution
updates [Yin et al. 2021].

• Krum: using outlier detection to detect and suppress updates that may be malicious
[Blanchard et al. 2017].

These three defences were selected to provide a wide coverage of common techniques to defend
against adversaries in FL. They are intended for backdoor attacks, however fairness attacks have
very similar characteristics: the malicious clients produce updates that are distributed differ-
ently to the clean clients. Therefore, it is reasonable to believe that these defences will be at
least partially successful in defending against attacks on fairness.

One of the major risks with this project is that the defences are not guaranteed to work against
the fairness attack. If this is the case, my project can still be a success, as this is the question
I am trying to answer. However, I would need to verify that I have correctly implemented the
defences. Therefore to mitigate this risk, I will also implement a simple backdoor attack to verify
each defence against.

I expect the main implementation challenge of my project to be a combination of constructing
effective baseline models for each of the three datasets I have chosen and implementing the three
defences above.

As a potential extension, I will investigate some other possible methods of attacking fairness in
FL. Below are three ideas for new attacks.

• Test the existing fairness attack on aggregation functions other than FedAvg. For example,
FedAdam [Reddi et al. 2021], or TERM [Li et al. 2021].

• Existing “fair” aggregators such as TERM attempt improve [sic] fairness by boosting the
influence of outliers on the aggregated model. This introduces a vulnerability by allowing
us to increase the influence of a single client by producing unusual updates. An attack
could therefore be constructed by splitting updates into components that will later combine
back into the original update, while individually being boosted due to being detected as
outliers. This is an interesting attack because it highlights a contradiction with defending
against fairness attacks: to improve fairness you must boost outliers, but to defend against
attacks you must suppress outliers.
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• The Krum defence makes some assumptions about the distribution of model updates. We
may be able to trick the defence by producing updates that lie within, but on the edge
of, clusters of clean updates, so that they are not detected as outliers, but still apply the
attack.

I would also be interested in investigating alternative defences to these as an extension. For
example, it might be possible to prevent this attack specifically by assigning a random random
weighting to the updates of client to make inverting the aggregation function more difficult.
Alternatively, we might be able to detect clients that are attacking fairness by considering the
change in variance of validation accuracy between classes when the update from the client is
passed to the aggregator compared to when it is suppressed.

Completing all of these extensions would be quite difficult, so I plan on selecting two of these to
complete once I have finished the core part of my project.

Success criteria
Core criteria:

• Construct a baseline FL model that has high accuracy on each of the three datasets

• Implement a simple backdoor attack on each model

• Implement the fairness attack on each model and achieve similar results to the paper

• Implement each of the three defences against each of the three models and achieve the
expected results when tested against the backdoor attack

• Test the effectiveness of the defences against the fairness attack

Possible extension criteria:

• Implement the attack against another aggregation function than FedAvg

• Implement a new attack against the TERM aggregator

• Implement a new attack that can bypass the Krum defence

• Implement a defence that assigns a random weighting to each client

• Implement a defence that detects updates which reduce fairness

Evaluation
I will first need to evaluate the baseline models’ accuracies to ensure the attacks are made on
a realistic setup. I will perform centralised evaluation by providing an evaluation function to
Flwr’s built in FedAvg strategy.

To evaluate the attacks and defences, I will record the mean and standard deviation of the
model’s accuracy on data containing the target attributes and data not containing these at-
tributes. The attack will be successful if the data containing the target attributes have a higher
mean or lower standard deviation. A hypothesis test could be used to decide if the difference is
statistically significant in cases where the two values are relatively close.



APPENDIX H. PROJECT PROPOSAL 58

In addition to this testing, I will further investigate how the defences interact with the attack
when introduced at different stages. For example, if the model has trained fairly before the
attack started, when the defence is added will it be able to recover from the attack faster than
if the attack had been implemented from the beginning?

I will ensure my testing is reproducible by keeping track of all hyperparameters and random
seeds for each run in a single YAML file that can be stored alongside the metrics.

Starting point
For the paper on the fairness attack I have implemented the attack against a model trained
on CIFAR10. The main implementation difficulty of my project will be around implementing
the FL models for other datasets and the defences rather than the attack itself. However, the
original codebase has been created without extensibility in mind, so I will also reimplement the
original attack in a more expandable and efficient way.

The original implementation of the attack simulates running the malicious code locally on the
malicious client. However, this is inefficient because each client is allocated the same hardware,
so we want to keep the load evenly distributed between clients to maximise our GPU utilisa-
tion. In new implementation [sic], the aggregation function would simulate the malicious client
directly. This will move the malicious computation out of the client’s training function, and
will be more expandable because we will be able to easily change the attack by substituting the
aggregation function.

The development of my project will be in python, using the Flwr and PyTorch libraries for sim-
ulating the federated learning environment. I will use Slurm to schedule jobs on the CamMLSys
servers (see Resource Requirements). I already have some understanding of both libraries and
Slurm.

Timetable

Attack on fairness

Simple backdoor attack

Defence 1 (DP)

Defence 2 (RA)

Defence 3 (Krum)

Extension 1

Extension 2

Implement model 1

Implement model 2

Implement model 3

Milestone: Implemented 
attacks on three datasets Milestone: Full results for each 

attack-defence-dataset combination

Milestone: extension attacks 
complete

Milestone: Progress 
report and presentation

Implementation

Testing

Writing (dissertation)

Other (e.g. buffer) Report(Buffer)

Submit!

Introduced in paper

Figure H.1.: A chart showing the timetable, where each column of coloured blocks represents a
two-week period.
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Michaelmas Term
1. 16/10/23 - 29/10/23

• Read up on current implementations of FL models for the datasets I will be training
on

• Read further on backdoor attacks in Federated Learning
• Implement baseline model for two of the three datasets

Milestone: Implemented a FL classifier for two datasets

2. 30/10/23 - 12/11/23
• Implement baseline model for the remaining dataset
• Implement a simple backdoor attack
• Implement the fairness attack

Milestone: Implemented attacks on three datasets

3. 13/11/23 - 26/11/23
• Implement the first backdoor defence

Milestone: Working implementation of the first defence

4. 27/11/23 - 10/12/23
• Implement the second backdoor defence

Milestone: Working implementation of the second defence

Winter Vacation
1. 11/12/23 - 24/12/23

• Implement the third backdoor defence
Milestone: Working implementation of the third defence

2. 25/12/23 - 07/01/24
• Implement any remaining testing infrastructure required to collect full results
• Perform the testing on each combination of attack, defence, and dataset.

Milestone: Full results for each attack-defence-dataset combination

3. 08/01/24 - 21/01/24
• Buffer period

Lent Term
1. 22/01/24 - 04/02/24

• Prepare progress report and presentation
Milestone: Progress report and presentation

2. 05/02/24 - 18/02/24
• Implement the fairness attack on a different aggregator than FedAvg
• Repeat the testing on this new attack
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Milestone: Extension 1 complete

3. 19/02/24 - 03/03/24
• Implement one of the other proposed extensions
• Repeat the testing for this third fairness attack

Milestone: Extension 2 complete

4. 04/03/24 - 17/03/24
• Begin dissertation: write first two chapters

Milestone: Introduction & preparation sent for review

Easter Vacation
1. 18/03/24 - 31/03/24

• Write-up implementation: complete chapter 3 of dissertation
Milestone: Implementation write-up sent for review

2. 01/04/24 - 14/04/24
• Finish dissertation: write chapters 4 and 5

Milestone: Full draft of dissertation sent for review

3. 15/04/24 - 28/04/24
• Review feedback
• Make changes to dissertation based on feedback

Milestone: Final draft ready

Easter Term
1. 29/04/24 - 10/05/24

• Make final changes to dissertation
• Submit dissertation

Milestone: Final dissertation for submission

Resource requirements
I will use my personal laptop (Dell G7 15) as my main device for writing both the codebase and
dissertation. I will use the GPUs from the CamMLSys group for model training, which I already
have permission to use. I will use GitHub to back up my codebase and Overleaf for writing my
dissertation. I will also back up my written work to Google Drive. As mentioned above, I will
use the python libraries Flwr and PyTorch. I will require a copy of each of the three datasets I
have mentioned, which I have already downloaded.
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